Patents by Inventor Tobias WIKSTRÖM

Tobias WIKSTRÖM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967638
    Abstract: A power diode comprises a plurality of diode cells (10). Each diode cell (10) comprises a first conductivity type first anode layer (40), a first conductivity type second anode layer (45) having a lower doping concentration than the first anode layer (40) and being separated from an anode electrode layer (20) by the first anode layer (40), a second conductivity type drift layer (50) forming a pn-junction with the second anode layer (45), a second conductivity type cathode layer (60) being in direct contact with the cathode electrode layer (60), and a cathode-side segmentation layer (67) being in direct contact with the cathode electrode layer (30). A material of the cathode-side segmentation layer (67) is a first conductivity type semiconductor, wherein an integrated doping content of the cathode-side, which is integrated along a direction perpendicular to the second main side (102), is below 2·1013 cm?2, or a material of the cathode-side segmentation layer (67) is an insulating material.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: April 23, 2024
    Assignee: Hitachi Energy Ltd
    Inventors: Tobias Wikstroem, Umamaheswara Vemulapati, Thomas Stiasny
  • Patent number: 11824091
    Abstract: An integrated gate-commutated thyristor (IGCT) includes a semiconductor wafer having a first main side and a second main side opposite to the first main side and a plurality of first type thyristor cells and second type thyristor cells. The cathode electrode of the first type thyristor cells forms an ohmic contact with the cathode region and the cathode electrode of the second type thyristor cells is insulated from the cathode region. A predefined percentage of second type thyristor cells of the overall amount of first type thyristor cells and second type thyristor cells in a segment ring is greater than 0% and less than or equal to 75%.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: November 21, 2023
    Assignee: Hitachi Energy Switzerland AG
    Inventors: Tobias Wikstroem, Umamaheswara Vemulapati
  • Publication number: 20230136897
    Abstract: A turn-off power semiconductor device includes first and second thyristor cells, a common gate contact and a plurality of stripe-shaped electrically conductive first gate runners. Each first gate runner has a first end portion, a second end portion opposite to the first end portion and a first connecting portion connecting the first end portion and the second end portion. The first end portion is directly connected to the common gate contact. The first gate electrode layer portions of all first thyristor cells are implemented as a first gate electrode layer. The second gate electrode layer portions of all second thyristor cells are implemented as a second gate electrode layer. The first gate electrode layer is directly connected to the common gate contact. At least the first connecting portion of each first gate runner is separated from the first gate electrode layer.
    Type: Application
    Filed: March 31, 2021
    Publication date: May 4, 2023
    Inventors: Tobias Wikstroem, Thomas Stiasny, Paul Commin
  • Publication number: 20230118951
    Abstract: A power semiconductor device includes a semiconductor wafer, a thyristor structure, and a bipolar junction transistor. The thyristor structure includes a first emitter layer of a first conductivity type adjacent the first main side, a first base layer of a second conductivity type, a second base layer of the first conductivity type, a second emitter layer of the second conductivity type, a gate electrode, a first main electrode, and a second main electrode arranged. The bipolar junction transistor includes a base electrode electrically separated from the gate electrode, a third main electrode arranged on the first main side and a fourth main electrode arranged on the second main side. The first main electrode is electrically connected to the third main electrode and the second main electrode is electrically connected to the fourth main electrode.
    Type: Application
    Filed: March 9, 2021
    Publication date: April 20, 2023
    Inventor: Tobias Wikstroem
  • Publication number: 20230111333
    Abstract: An integrated gate-commutated thyristor (IGCT) includes a semiconductor wafer having a first main side and a second main side opposite to the first main side and a plurality of first type thyristor cells and second type thyristor cells. The cathode electrode of the first type thyristor cells forms an ohmic contact with the cathode region and the cathode electrode of the second type thyristor cells is insulated from the cathode region. A predefined percentage of second type thyristor cells of the overall amount of first type thyristor cells and second type thyristor cells in a segment ring is greater than 0% and less than or equal to 75%.
    Type: Application
    Filed: February 22, 2021
    Publication date: April 13, 2023
    Inventors: Tobias Wikstroem, Umamaheswara Vemulapati
  • Publication number: 20230046742
    Abstract: A reverse conducting power semiconductor device includes a plurality of thyristor cells and a freewheeling diode are integrated in a semiconductor wafer. The freewheeling diode includes a diode anode layer, a diode anode electrode, a diode cathode layer, and a diode cathode electrode. The diode cathode layer includes diode cathode layer segments, each of which is stripe-shaped and arranged within a corresponding stripe-shaped first diode anode layer segment such that a longitudinal main axis of each diode cathode layer segment extends along the longitudinal main axis of the corresponding one of the first diode anode layer segments.
    Type: Application
    Filed: February 3, 2021
    Publication date: February 16, 2023
    Inventors: Tobias Wikstroem, Umamaheswara Vemulapati
  • Publication number: 20220181473
    Abstract: A power diode comprises a plurality of diode cells (10). Each diode cell (10) comprises a first conductivity type first anode layer (40), a first conductivity type second anode layer (45) having a lower doping concentration than the first anode layer (40) and being separated from an anode electrode layer (20) by the first anode layer (40), a second conductivity type drift layer (50) forming a pn-junction with the second anode layer (45), a second conductivity type cathode layer (60) being in direct contact with the cathode electrode layer (60), and a cathode-side segmentation layer (67) being in direct contact with the cathode electrode layer (30). A material of the cathode-side segmentation layer (67) is a first conductivity type semiconductor, wherein an integrated doping content of the cathode-side, which is integrated along a direction perpendicular to the second main side (102), is below 2·1013 cm?2, or a material of the cathode-side segmentation layer (67) is an insulating material.
    Type: Application
    Filed: April 1, 2020
    Publication date: June 9, 2022
    Inventors: Tobias Wikstroem, Umamaheswara Vemulapati, Thomas Stiasny
  • Publication number: 20210384091
    Abstract: A power semiconductor device includes a semiconductor wafer having a junction and a junction termination laterally surrounding the junction. A protection layer covers the lateral side of the semiconductor wafer and covers the second main side at least in an area of the junction termination. A first metal disk is arranged on the first main side to cover the first main side of the semiconductor wafer. An interface between the first metal disk and the semiconductor wafer is a free floating interface. A metal layer sandwiched between the first metal disk and the semiconductor wafer.
    Type: Application
    Filed: October 10, 2019
    Publication date: December 9, 2021
    Inventors: Jagoda Dobrzynska, Jan Vobecky, David Guillon, Tobias Wikstroem
  • Patent number: 11139219
    Abstract: A bypass thyristor device includes a semiconductor device providing a thyristor with a cathode electrode on a cathode side, a gate electrode on the cathode side surrounded by the cathode electrode and an anode electrode on an anode side; an electrically conducting cover element arranged on the cathode side and in electrical contact with the cathode electrode on a contact side; and a gate contact element electrically connected to the gate electrode and arranged in a gate contact opening in the contact side of the cover element; wherein the cover element has a gas expansion volume in the contact side facing the cathode side, which gas expansion volume is interconnected with the gate contact opening for gas exchange.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: October 5, 2021
    Assignee: ABB Schweiz AG
    Inventors: Tobias Wikström, Remo Baumann, Sascha Populoh, Bjoern Oedegard
  • Patent number: 10892245
    Abstract: The invention relates to a semi-fabricated switching device comprising a semiconductor element and a housing comprising a spring system with a ring-shaped washer laterally surrounding the semiconductor element for clamping the semiconductor element between two pole pieces. The washer is deflectable between the pole pieces by a first deflection element, which contacts the washer in a first contact area on a first side, and by a second deflection element, which contacts the washer in a second contact area on a second side. The first contact area is displaced to the second contact area. The first and second deflection element can deflect the washer such that in clamped condition an electrical contact is achievable between the pole pieces and the semiconductor element.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: January 12, 2021
    Assignee: ABB Power Grids Switzerland AG
    Inventor: Tobias Wikstroem
  • Publication number: 20200144141
    Abstract: A bypass thyristor device includes a semiconductor device providing a thyristor with a cathode electrode on a cathode side, a gate electrode on the cathode side surrounded by the cathode electrode and an anode electrode on an anode side; an electrically conducting cover element arranged on the cathode side and in electrical contact with the cathode electrode on a contact side; and a gate contact element electrically connected to the gate electrode and arranged in a gate contact opening in the contact side of the cover element; wherein the cover element has a gas expansion volume in the contact side facing the cathode side, which gas expansion volume is interconnected with the gate contact opening for gas exchange.
    Type: Application
    Filed: January 8, 2020
    Publication date: May 7, 2020
    Inventors: Tobias Wikström, Remo Baumann, Sascha Populoh, Bjoern Oedegard
  • Publication number: 20190363065
    Abstract: The invention relates to a semi-fabricated switching device comprising a semiconductor element and a housing comprising a spring system with a ring-shaped washer laterally surrounding the semiconductor element for clamping the semiconductor element between two pole pieces. The washer is deflectable between the pole pieces by a first deflection element, which contacts the washer in a first contact area on a first side, and by a second deflection element, which contacts the washer in a second contact area on a second side. The first contact area is displaced to the second contact area. The first and second deflection element can deflect the washer such that in clamped condition an electrical contact is achievable between the pole pieces and the semiconductor element.
    Type: Application
    Filed: July 17, 2019
    Publication date: November 28, 2019
    Inventor: Tobias Wikstroem
  • Patent number: 10249747
    Abstract: The present application relates to a turn-off power semiconductor device having a wafer with an active region and a termination region surrounding the active region, a rubber ring as an edge passivation for the wafer and a gate ring placed on a ring-shaped gate contact on the termination region for contacting the gate electrodes of a thyristor cell formed in the active region of the wafer. In the turn-off power semiconductor device, the outer circumferential surface of the gate ring is in contact with the rubber ring to define the inner border of the rubber ring. The area consumed by the ring-shaped gate contact on the termination or edge region can be minimized. The upper surface of the gate ring and the upper surface of the rubber ring form a continuous surface extending in a plane parallel to the first main side of the wafer.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: April 2, 2019
    Assignee: ABB Schweiz AG
    Inventors: Hendrik Ravener, Tobias Wikström, Hermann Amstutz, Norbert Meier
  • Publication number: 20170033208
    Abstract: The present application relates to a turn-off power semiconductor device having a wafer with an active region and a termination region surrounding the active region, a rubber ring as an edge passivation for the wafer and a gate ring placed on a ring-shaped gate contact on the termination region for contacting the gate electrodes of a thyristor cell formed in the active region of the wafer. In the turn-off power semiconductor device, the outer circumferential surface of the gate ring is in contact with the rubber ring to define the inner border of the rubber ring. The area consumed by the ring-shaped gate contact on the termination or edge region can be minimized. The upper surface of the gate ring and the upper surface of the rubber ring form a continuous surface extending in a plane parallel to the first main side of the wafer.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Inventors: Hendrik Ravener, Tobias Wikström, Hermann Amstutz, Norbert Meier
  • Patent number: 9503082
    Abstract: An exemplary current switching device includes an integrated gate-commutated thyristor with an anode, a cathode, and a gate, wherein a current between the anode and the cathode is interruptible by applying a switch-off voltage to the gate; and a gate unit for generating the switch-off voltage. The gate unit and a connection of the gate unit to the gate establish a gate circuit having a stray impedance. The gate unit is adapted for generating a spiked switch-off voltage with a maximum above a breakdown voltage (VGRMAX) between the cathode and the gate, such that the switch-off voltage at the gate stays below the breakdown voltage (VGRMAX) due to the stray impedance of the gate circuit.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: November 22, 2016
    Assignee: ABB Schweiz AG
    Inventor: Tobias Wikström
  • Patent number: 9490621
    Abstract: A high-power semiconductor module is disclosed, which can include a high-power semiconductor device mounted on the module and at least two electrical connections. The module can include a short-circuit device mounted on the module. The short-circuit device can generate a persistent electrically conducting path between the two electrical connections upon receiving a trigger signal by electrically destroying a semiconductor of the high-power semiconductor module.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: November 8, 2016
    Assignee: ABB Schweiz AG
    Inventors: Tobias Wikström, Thomas Setz
  • Publication number: 20150162738
    Abstract: A high-power semiconductor module is disclosed, which can include a high-power semiconductor device mounted on the module and at least two electrical connections. The module can include a short-circuit device mounted on the module. The short-circuit device can generate a persistent electrically conducting path between the two electrical connections upon receiving a trigger signal by electrically destroying a semiconductor of the high-power semiconductor module.
    Type: Application
    Filed: July 11, 2014
    Publication date: June 11, 2015
    Inventors: Tobias Wikström, Thomas Setz
  • Publication number: 20140312959
    Abstract: An exemplary current switching device includes an integrated gate-commutated thyristor with an anode, a cathode, and a gate, wherein a current between the anode and the cathode is interruptible by applying a switch-off voltage to the gate; and a gate unit for generating the switch-off voltage. The gate unit and a connection of the gate unit to the gate establish a gate zcircuit having a stray impedance. The gate unit is adapted for generating a spiked switch-off voltage with a maximum above a breakdown voltage (VGRMAX) between the cathode and the gate, such that the switch-off voltage at the gate stays below the breakdown voltage (VGRMAX) due to the stray impedance of the gate circuit.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 23, 2014
    Applicant: ABB Technology AG
    Inventor: Tobias WIKSTRÖM
  • Patent number: 8519433
    Abstract: The present disclosure provides a semiconductor switching device including a substrate having deposited thereon a cathode, an anode and a gate of the semiconductor switching device, and a connection means for electrically connecting the cathode in the gate of the semiconductor switching device to an external circuit unit. The connection includes a cathode-gate connection unit having a coaxial structure including a gate conductor and a cathode conductor for electrically connecting the cathode and the gate of the semiconductor switching device to the external circuit unit.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: August 27, 2013
    Assignee: ABB Research Ltd
    Inventors: Didier Cottet, Thomas Stiasny, Tobias Wikstroem
  • Publication number: 20100301384
    Abstract: A diode for fast switching applications includes a base layer of a first conductivity type with a first main side and a second main side opposite the first main side, an anode layer of a second conductivity type, which is arranged on the second main side, a plurality of first zones of the first conductivity type with a higher doping concentration than the base layer, and a plurality of second zones of the second conductivity type. The first and second zones are arranged alternately on the first main side. A cathode electrode is arranged on top of the first and second zones on the side of the zones which lies opposite the base layer, and a anode electrode is arranged on top of the anode layer on the side of the anode layer which lies opposite the base layer. The base layer includes a first sublayer, which is formed by the second main sided part of the base layer, and a second sublayer, which is formed by the first main sided part of the base layer.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 2, 2010
    Applicant: ABB TECHNOLOGY AG
    Inventors: Iulian NISTOR, Arnost Kopta, Tobias Wikstroem