Patents by Inventor Todd P. Marut

Todd P. Marut has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11389745
    Abstract: A kettle reboiler includes a shell, a liquid reservoir defined within the shell to contain a first process fluid, and a tube bundle positioned within the liquid reservoir and at least partially submergible in the first process fluid, the tube bundle being configured to circulate a second process fluid that causes the first process fluid to boil and discharge a vapor-liquid mixture. A liquid-vapor separation assembly is positioned in the shell and includes a separation deck, and a plurality of separation devices mounted to the separation deck, each separation device being operable to de-entrain liquid from the vapor-liquid mixture and discharge a vapor. A vapor outlet nozzle is coupled to the shell to receive the vapor discharged from the plurality of separation devices.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: July 19, 2022
    Assignee: Exxon Mobil Technology and Engineering Company
    Inventors: Nicholas F. Urbanski, Todd P. Marut
  • Publication number: 20210178284
    Abstract: A kettle reboiler includes a shell, a liquid reservoir defined within the shell to contain a first process fluid, and a tube bundle positioned within the liquid reservoir and at least partially submergible in the first process fluid, the tube bundle being configured to circulate a second process fluid that causes the first process fluid to boil and discharge a vapor-liquid mixture. A liquid-vapor separation assembly is positioned in the shell and includes a separation deck, and a plurality of separation devices mounted to the separation deck, each separation device being operable to de-entrain liquid from the vapor-liquid mixture and discharge a vapor. A vapor outlet nozzle is coupled to the shell to receive the vapor discharged from the plurality of separation devices.
    Type: Application
    Filed: November 17, 2020
    Publication date: June 17, 2021
    Inventors: Nicholas F. Urbanski, Todd P. Marut
  • Publication number: 20190359899
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Publication number: 20190338203
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: July 16, 2019
    Publication date: November 7, 2019
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 10414991
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: September 17, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Himanshu Gupta, John D. Nelson, Cindy J. Hughart, Jane C. Cheng, Steven W. Levine, Stephen H. Brown, Todd P. Marut, David C. Dankworth, Stuart L. Soled, Thomas F. Degnan, Jr., Robert J. Falkiner, Mohsen N. Harandi, Juan D. Henao, Lei Zhang, Chuansheng Bai, Richard C. Dougherty
  • Publication number: 20180002617
    Abstract: Systems and methods are provided for hydroconversion of a heavy oil feed under slurry hydroprocessing conditions and/or solvent assisted hydroprocessing conditions. The systems and methods for slurry hydroconversion can include the use of a configuration that can allow for improved separation of catalyst particles from the slurry hydroprocessing effluent. In addition to allowing for improved catalyst recycle, an amount of fines in the slurry hydroconversion effluent can be reduced or minimized. This can facilitate further processing or handling of any “pitch” generated during the slurry hydroconversion. The systems and methods for solvent assisted hydroprocessing can include processing of a heavy oil feed in conjunction with a high solvency dispersive power crude.
    Type: Application
    Filed: June 19, 2017
    Publication date: January 4, 2018
    Inventors: Benjamin S. UMANSKY, Himanshu GUPTA, John D. NELSON, Cindy J. HUGHART, Jane C. CHENG, Steven W. LEVINE, Stephen H. BROWN, Todd P. MARUT, David C. DANKWORTH, Stuart L. SOLED, Thomas F. DEGNAN, JR., Robert J. FALKINER, Mohsen N. HARANDI, Juan D. HENAO, Lei ZHANG, Chuansheng BAI, Richard C. DOUGHERTY
  • Patent number: 9266047
    Abstract: Vane type mist eliminator segments are arranged in a plurality of tiers at separate vertically spaced locations in a tower, typically of the upright, cylindrical type, with the eliminator at each tier covering only a portion of the cross section of the tower. The eliminator segment(s) in each tier are laterally displaced in the tower from the adjacent vertically spaced eliminator segments to form a staggered configuration for the segments. Each mist eliminator preferably extends over 50-70% of the cross-sectional area of the tower to leave an open flow passage in the tier; the staggering of the segments and the associated flow passages defines an upward tortuous or zig-zag open flow path for vapors ascending the tower through the open flow passages when the eliminator segment(s) become fouled in use.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: February 23, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Robert Piszczek, Todd P. Marut, Brian D. Albert, Vikram Singh, Simon Y. Yeung
  • Publication number: 20150128543
    Abstract: Vane type mist eliminator segments are arranged in a plurality of tiers at separate vertically spaced locations in a tower, typically of the upright, cylindrical type, with the eliminator at each tier covering only a portion of the cross section of the tower. The eliminator segment(s) in each tier are laterally displaced in the tower from the adjacent vertically spaced eliminator segments to form a staggered configuration for the segments. Each mist eliminator preferably extends over 50-70% of the cross-sectional area of the tower to leave an open flow passage in the tier; the staggering of the segments and the associated flow passages defines an upward tortuous or zig-zag open flow path for vapors ascending the tower through the open flow passages when the eliminator segment(s) become fouled in use.
    Type: Application
    Filed: July 3, 2014
    Publication date: May 14, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Robert Piszczek, Todd P. Marut, Brian D. Albert, Vikram Singh, Simon Y. Yeung
  • Publication number: 20080250814
    Abstract: A cryogenic air separation unit (ASU) is integrated into a lube oil dehazing process whereby waste nitrogen from the ASU is used to cool a lube oil base stock to promote the agglomeration and separation of haze-forming constituents in the base stock. Advantageously, the ASU may be part of a gas-to-liquid plant.
    Type: Application
    Filed: March 27, 2008
    Publication date: October 16, 2008
    Inventors: Todd P. Marut, Narasimhan Sundaram, Matthew W. Hale