Patents by Inventor Todd ROCKOFF

Todd ROCKOFF has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948536
    Abstract: A timing controller of a display set is integrated with an encoder for transport of analog signals between a display controller and source drivers of the display panel. The timing controller and integrated encoder are within an integrated circuit and are part of a chipset. The integrated circuit is located immediately after the SoC of a display set or is integrated within the SoC. A video signal sent to the timing controller chip is unpacked into sample values which are permuted into vectors of samples, one vector per encoder. Each vector is converted to analog, encoded and the analog levels are sent to the source drivers which decode into analog samples. Or, each digital vector is encoded and then converted to analog. A line buffer uses a memory to present a row of pixel information to the encoders. A mobile telephone has an integrated TCON with SSVT transmitter.
    Type: Grant
    Filed: June 13, 2023
    Date of Patent: April 2, 2024
    Assignee: HYPHY USA INC.
    Inventors: Eyal Friedman, Todd Rockoff
  • Patent number: 11838047
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: December 5, 2023
    Assignee: HYPHY USA INC.
    Inventors: Rob Hannebauer, Todd Rockoff, Dean Rubine
  • Publication number: 20230343304
    Abstract: A video display includes a display panel with gate drivers and source drivers. Each of said the source drivers is arranged to receive a discrete-time continuous-amplitude signal representing a video stream over a transmission medium and to decode the signal using demodulation to produce a plurality of samples for output on outputs of the source drivers. At least one of the source drivers is arranged to extract a gate driver timing control signal from the signal and to output the gate driver control signal to the gate drivers in order to synchronize the gate drivers with outputs of the source drives, whereby the video stream is displayed on the display panel of the display unit.
    Type: Application
    Filed: June 14, 2023
    Publication date: October 26, 2023
    Inventors: Alex HENZEN, Todd ROCKOFF
  • Publication number: 20230327701
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Rob HANNEBAUER, Todd ROCKOFF, Dean RUBINE
  • Publication number: 20230326429
    Abstract: A timing controller of a display set is integrated with an encoder for transport of analog signals between a display controller and source drivers of the display panel. The timing controller and integrated encoder are within an integrated circuit and are part of a chipset. The integrated circuit is located immediately after the SoC of a display set or is integrated within the SoC. A video signal sent to the timing controller chip is unpacked into sample values which are permuted into vectors of samples, one vector per encoder. Each vector is converted to analog, encoded and the analog levels are sent to the source drivers which decode into analog samples. Or, each digital vector is encoded and then converted to analog. A line buffer uses a memory to present a row of pixel information to the encoders. A mobile telephone has an integrated TCON with SSVT transmitter.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Inventors: Eyal FRIEDMAN, Todd ROCKOFF
  • Publication number: 20230223981
    Abstract: A wireless transmitter and antenna are provided on the transmit side, and a receiver and an antenna are provided on the receive side. A transmitter receives samples from a video source via media signals, permutes the input samples into input vectors, and encodes each input vector with reference to a set of orthogonal codes to produce analog SSVT signals per encoder. The wireless transmitter modulates the SSVT signals generated by the SSVT transmitter onto one or more carrier frequency signals. Once modulated, the carrier frequency signals are then broadcast by the antenna. On the receive side, the antenna receives the broadcast and provides the modulated carrier signals to the wireless receiver. In response, the wireless receiver demodulates the carrier frequency signals and produces the corresponding analog SSVT signals, which are then decoded into reconstructions of the input media samples into output vectors, which are then permuted into output samples that are sent to a video sink for display.
    Type: Application
    Filed: January 11, 2023
    Publication date: July 13, 2023
    Inventors: Robert HANNEBAUER, Todd ROCKOFF
  • Publication number: 20230071881
    Abstract: A video display includes a display panel with gate drivers and source drivers. Each of said the source drivers is arranged to receive a discrete-time continuous-amplitude signal representing a video stream over a transmission medium and to decode the signal using demodulation to produce a plurality of samples for output on outputs of the source drivers. At least one of the source drivers is arranged to extract a gate driver timing control signal from the signal and to output the gate driver control signal to the gate drivers in order to synchronize the gate drivers with outputs of the source drives, whereby the video stream is displayed on the display panel of the display unit.
    Type: Application
    Filed: August 31, 2022
    Publication date: March 9, 2023
    Inventors: Alex HENZEN, Todd ROCKOFF
  • Publication number: 20220302953
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Application
    Filed: June 7, 2022
    Publication date: September 22, 2022
    Inventors: Rob HANNEBAUER, Todd ROCKOFF, Dean RUBINE
  • Patent number: 11394422
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: July 19, 2022
    Assignee: HYPHY USA INC.
    Inventors: Rob Hannebauer, Todd Rockoff, Dean Rubine
  • Publication number: 20210258039
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Rob HANNEBAUER, Todd ROCKOFF, Dean RUBINE
  • Patent number: 11025292
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: June 1, 2021
    Assignee: HYPHY USA INC.
    Inventors: Rob Hannebauer, Todd Rockoff, Dean Rubine
  • Patent number: 10763914
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 1, 2020
    Assignee: hyPHY USA Inc.
    Inventors: Rob Hannebauer, Todd Rockoff, Dean Rubine
  • Publication number: 20200169288
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Rob HANNEBAUER, Todd ROCKOFF, Dean RUBINE
  • Publication number: 20190158138
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 23, 2019
    Inventors: Rob HANNEBAUER, Todd ROCKOFF, Dean RUBINE
  • Patent number: 10158396
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: December 18, 2018
    Assignee: Rockoff Security PTY LTD
    Inventors: Rob Hannebauer, Todd Rockoff, Dean Rubine
  • Publication number: 20180212646
    Abstract: Infrastructure electronics equipment incorporates infrastructure Local-Site Transports (LSTs). LSTs convey payload sampled signals over imperfect electromagnetic (EM) pathways whose physical properties are usually unknown when the equipment (e.g., Cameras, Displays, Set-Top Boxes) is manufactured. Prior LSTs hedge against EM pathway degradation in several ways: requiring high-quality cables (e.g., HDMI); restricting transmission distance, (e.g., HDMI); and/or reducing quality, via compression, to extend transmission distance somewhat (e.g., Ethernet). The subject of this disclosure is an infrastructure LST for sampled signals that causes the physical errors inevitably arising from propagation of sensory payloads over imperfect EM pathways to manifest in a perceptually benign manner, leveraging legacy infrastructure and reducing costs to achieve a favorable ratio of fidelity to transmission distance.
    Type: Application
    Filed: March 19, 2018
    Publication date: July 26, 2018
    Inventors: Rob HANNEBAUER, Todd ROCKOFF, Dean RUBINE