Patents by Inventor Tolga Aytug

Tolga Aytug has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230400436
    Abstract: A gas sensing device comprising a layer of guest-free cryptophane A molecules on a substrate capable of detecting a molecular level change in mass, viscosity, or stress due to absorption of gas molecules into the cryptophane A molecules, wherein the cryptophane A molecules have the following structure: wherein R1, R2, R3, R4, R5, and R6 are independently selected from methyl and ethyl groups. Also described herein is a method for manufacturing the gas sensing device, particularly a step of sublimating cryptophane A molecules onto a suitable substrate. Also described herein is a method of detecting one or more gases in a space by placing a gas sensing device, as described above, in the space, wherein the gas sensing device transmits detection signals to an external electronic device that performs an analysis of the detection signals.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 14, 2023
    Inventors: Ilja Popovs, Benjamin LaRiviere, Aleksandr Ivanov, Robert J. Warmack, Timothy E. Mcknight, Tolga Aytug, Timothy J. Mcintyre
  • Publication number: 20230288362
    Abstract: A low-cost and low-power polyaniline-based (PANI) gas sensor is provided. The PANI-based gas sensor is formed on a flexible polyimide (PI) substrate using additive manufacturing techniques. The gas sensor can include silver interdigitated electrode (IDE) arrays and conducting polymeric sensing films (i.e., PANI) that are printed onto the PI substrate using a direct-write technology of aerosol-jet printing. Aerosol-jet printing enables high-resolution, non-contact deposition of both the electrode and chemically sensitive materials. The gas sensor is optionally capable of 5 ppm sensitivity and a sub-ppm detection limit.
    Type: Application
    Filed: March 8, 2023
    Publication date: September 14, 2023
    Inventors: Tolga Aytug, Christine Fisher, Pooran C. Joshi, Robert J. Warmack
  • Publication number: 20220298361
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A continuous layer can be adhered to a plurality of surfaces of the nanostructured features to render the plurality of surfaces of the nanostructured features both hydrophobic and oleophobic with respect to fingerprint oil comprising eccrine secretions and sebaceous secretions, thereby providing an anti-fingerprinting characteristic to the article.
    Type: Application
    Filed: April 4, 2022
    Publication date: September 22, 2022
    Inventors: Tolga AYTUG, John T. SIMPSON
  • Patent number: 11325348
    Abstract: A method for producing a carbon nanotube-metal composite in which carbon nanotubes are layered on a metal substrate, the method comprising: (i) depositing a liquid, in which carbon nanotubes are suspended, onto said metal substrate; (ii) during or after step (i), subjecting said liquid to a shearing force sufficient to spatially confine the liquid to induce at least partial alignment of said carbon nanotubes on said metal substrate; and (iii) removing said liquid to produce said carbon nanotube-metal composite; wherein, after step (iii), the lengthwise dimensions of said carbon nanotubes are adhered to and oriented parallel with said metal surface, and said carbon nanotubes are at least partially aligned with each other. In some embodiments, the liquid is deposited in the form of droplets, and the droplets are subjected to a shearing force to cause them to elongate, which induces at least partial alignment of the carbon nanotubes.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: May 10, 2022
    Assignee: UT-Battelle, LLC
    Inventors: Tolga Aytug, Ilia N. Ivanov, Mina Yoon, Xiangtao Meng, Soydan Ozcan
  • Patent number: 11292288
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A surface of the nanostructured features can be coated with a continuous hydrophobic coating. The method can include providing a substrate; depositing a film on the substrate; decomposing the film to form a decomposed film; and etching the decomposed film to form the nanostructured layer.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: April 5, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Tolga Aytug, David Christen, John T. Simpson
  • Patent number: 11292919
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A continuous layer can be adhered to a plurality of surfaces of the nanostructured features to render the plurality of surfaces of the nanostructured features both hydrophobic and oleophobic with respect to fingerprint oil comprising eccrine secretions and sebaceous secretions, thereby providing an anti-fingerprinting characteristic to the article.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: April 5, 2022
    Assignee: UT-BATTELLE, LLC
    Inventors: Tolga Aytug, John T. Simpson
  • Publication number: 20220097016
    Abstract: A fluid storage media includes a plurality of microspheres. Each microsphere includes a porous core with a porous core material and having an exterior surface. A stored fluid is within the porous core. A coating layer covers all of the exterior surface of the porous core. The coating layer includes a coating material which transitions from a first state to a second state, wherein in the first state the coating material is permeable to the stored fluid, and in the second state the material is impermeable to the stored fluid. The coating material in the second state is configured to encapsulate and maintain the stored fluid inside the porous core. A method of making a fluid storage media, a method of delivering a fluid and a method of delivering a biologically active fluid medication to a patient are also disclosed.
    Type: Application
    Filed: October 25, 2021
    Publication date: March 31, 2022
    Inventors: Tolga Aytug, Kai Li, Meghan E. Lamm, Diana Hun, Kaushik Biswas
  • Publication number: 20220023817
    Abstract: An insulation medium invention includes a plurality of microspheres. Each microsphere comprises a porous core comprising a porous core material and having an exterior surface, a gas within the porous core, and a coating layer coating all of the exterior surface of the porous core. The coating layer comprises a coating material which transitions from a first state to a second state. In the first state, the coating material is permeable to the gas. In the second state the material is impermeable to the gas. The coating material in the second state is configured to encapsulate and maintain partial vacuum of the gas inside the porous core. In one embodiment, in the second state the coating is impermeable to air. Insulated structures, a method of making an insulation medium, a fluid storage media, and a method of delivering a fluid are also disclosed.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 27, 2022
    Inventors: Tolga Aytug, Kai Li, Meghan E. Lamm, Diana Hun, Kaushik Biswas
  • Patent number: 10844479
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A surface of the nanostructured features can be coated with a continuous hydrophobic coating. The method can include providing a substrate; depositing a film on the substrate; decomposing the film to form a decomposed film; and etching the decomposed film to form the nanostructured layer.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: November 24, 2020
    Assignee: UT-BATTELLE, LLC
    Inventor: Tolga Aytug
  • Patent number: 10179313
    Abstract: Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: January 15, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Michael Z. Hu, John T. Simpson, Tolga Aytug, Mariappan Parans Paranthaman, Matthew R. Sturgeon
  • Publication number: 20180339492
    Abstract: A method for producing a carbon nanotube-metal composite in which carbon nanotubes are layered on a metal substrate, the method comprising: (i) depositing a liquid, in which carbon nanotubes are suspended, onto said metal substrate; (ii) during or after step (i), subjecting said liquid to a shearing force sufficient to spatially confine the liquid to induce at least partial alignment of said carbon nanotubes on said metal substrate; and (iii) removing said liquid to produce said carbon nanotube-metal composite; wherein, after step (iii), the lengthwise dimensions of said carbon nanotubes are adhered to and oriented parallel with said metal surface, and said carbon nanotubes are at least partially aligned with each other. In some embodiments, the liquid is deposited in the form of droplets, and the droplets are subjected to a shearing force to cause them to elongate, which induces at least partial alignment of the carbon nanotubes.
    Type: Application
    Filed: May 22, 2018
    Publication date: November 29, 2018
    Inventors: Tolga AYTUG, Ilia N. IVANOV, Mina YOON, Xiangtao MENG, Soydan OZCAN
  • Publication number: 20180171469
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A surface of the nanostructured features can be coated with a continuous hydrophobic coating. The method can include providing a substrate; depositing a film on the substrate; decomposing the film to form a decomposed film; and etching the decomposed film to form the nanostructured layer.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventor: Tolga Aytug
  • Patent number: 9771656
    Abstract: This disclosure relates to methods that include depositing a first component and a second component to form a film including a plurality of nanostructures, and coating the nanostructures with a hydrophobic layer to render the film superhydrophobic. The first component and the second component can be immiscible and phase-separated during the depositing step. The first component and the second component can be independently selected from the group consisting of a metal oxide, a metal nitride, a metal oxynitride, a metal, and combinations thereof. The films can have a thickness greater than or equal to 5 nm; an average surface roughness (Ra) of from 90 to 120 nm, as measured on a 5 ?m×5 ?m area; a surface area of at least 20 m2/g; a contact angle with a drop of water of at least 120 degrees; and can maintain the contact angle when exposed to harsh conditions.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 26, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Tolga Aytug, Mariappan Parans Paranthaman, John T. Simpson, Daniela Florentina Bogorin
  • Patent number: 9752049
    Abstract: An optically transparent, hydrophobic coating, exhibiting an average contact angle of at least 100 degrees with a drop of water. The coating can be produced using low-cost, environmentally friendly components. Methods of preparing and using the optically transparent, hydrophobic coating.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: September 5, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Tolga Aytug, Mariappan Parans Paranthaman, John T. Simpson, Daniel A. Hillesheim, Neil E. Trammell
  • Publication number: 20160250601
    Abstract: Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 1, 2016
    Inventors: Michael Z. HU, John T. SIMPSON, Tolga AYTUG, Mariappan Parans PARANTHAMAN, Matthew R. STURGEON
  • Publication number: 20160208073
    Abstract: A method for producing a polymer-metal oxide composite material resistant to degradation resulting from exposure to gamma irradiation, the method comprising exposing a composite precursor comprised of a heat-resistant polymer in which metal oxide nanoparticles are incorporated to gamma irradiation of at least 1 MRad in a flowing gas atmosphere for a period of at least 12 hours. The resulting radiation-resistant composite material and shaped articles of the material are also described.
    Type: Application
    Filed: January 15, 2016
    Publication date: July 21, 2016
    Inventors: Mariappan Parans PARANTHAMAN, Tomonori SAITO, Tolga AYTUG, Keith John LEONARD, Robert C. DUCKWORTH, Georgios POLYZOS, Kunlun HONG
  • Patent number: 9308501
    Abstract: Superhydrophobic membrane structures having a beneficial combination of throughput and a selectivity. The membrane structure can include a porous support substrate; and a membrane layer adherently disposed on and in contact with the porous support substrate. The membrane layer can include a nanoporous material having a superhydrophobic surface. The superhydrophobic surface can include a textured surface, and a modifying material disposed on the textured surface. Methods of making and using the membrane structures.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: April 12, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Michael Z. Hu, John T. Simpson, Tolga Aytug, Mariappan Parans Paranthaman, Matthew R. Sturgeon
  • Publication number: 20150239773
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A surface of the nanostructured features can be coated with a continuous hydrophobic coating. The method can include providing a substrate; depositing a film on the substrate; decomposing the film to form a decomposed film; and etching the decomposed film to form the nanostructured layer.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 27, 2015
    Inventor: Tolga Aytug
  • Publication number: 20150232690
    Abstract: An optically transparent, hydrophobic coating, exhibiting an average contact angle of at least 100 degrees with a drop of water. The coating can be produced using low-cost, environmentally friendly components. Methods of preparing and using the optically transparent, hydrophobic coating.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 20, 2015
    Applicant: UT-BATTELLE, LLC
    Inventors: Beth L. Armstrong, Tolga Aytug, Mariappan Parans Paranthaman, John T. Simpson, Daniel A. Hillesheim, Neil E. Trammell
  • Patent number: 8741158
    Abstract: An article having a nanostructured surface and a method of making the same are described. The article can include a substrate and a nanostructured layer bonded to the substrate. The nanostructured layer can include a plurality of spaced apart nanostructured features comprising a contiguous, protrusive material and the nanostructured features can be sufficiently small that the nanostructured layer is optically transparent. A surface of the nanostructured features can be coated with a continuous hydrophobic coating. The method can include providing a substrate; depositing a film on the substrate; decomposing the film to form a decomposed film; and etching the decomposed film to form the nanostructured layer.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: June 3, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Tolga Aytug, John T. Simpson, David K. Christen