Patents by Inventor Tom HILBERT

Tom HILBERT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10725132
    Abstract: In a magnetic resonance (MR) apparatus, and model-based method, for identifying a nuclear spin-dependent attribute of a subject, MR signals are acquired in multiple repetitions of an MR data acquisition sequence that is changed from repetition-to-repetition so as to deliberately encode effects of magnetization transfer between nuclear spins into the acquired MR signals. A model is generated, composed of at least two molecule pools, in which a single magnetization transfer parameter is used that is derived from the MR signals in which the magnetization transfer is encoded. A nuclear spin-dependent attribute of the subject is then identified, by comparing at least one MR signal evolution from the subject to at least one signal evolution produced by the model.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: July 28, 2020
    Assignees: Siemens Healthcare GmbH, New York University
    Inventors: Martijn Cloos, Tom Hilbert, Tobias Kober
  • Patent number: 10657410
    Abstract: Organ tissue properties of a patient are automatically compared with organ tissue properties of a healthy subject group. A population norm for the organ tissue properties is determined by: selecting at least two different tissue properties of the organ; determining for each tissue property previously selected and for each subject of said group a quantitative tissue property map; for each subject of the group, calculating a joint histogram from all the quantitative tissue property maps obtained for said subject; and determining an averaged joint histogram from all subjects of the healthy group, thus defining the population norm. A comparison is automatically performed of the averaged joint histogram with a patient joint histogram obtained for the organ tissue properties of the patient, by calculating a statistical deviation of values of a patient joint histogram relative to values of the averaged joint histogram, and mapping the statistical deviation to the patient organ.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 19, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Tom Hilbert, Tobias Kober, Gian Franco Piredda
  • Publication number: 20190371465
    Abstract: A system and a method determine a value for a parameter. Reference values for the parameter are determined from a group of objects. A first technique is used by the system for determining for each object the reference value from a first set of data. A learning dataset is created by associating for each object of the group of objects a second set of data and the reference value. The second set of data is acquired by the system according to a second technique for determining values of the parameter and is configured for enabling a determination of the parameter. A machine learning technique trained on the learning dataset is used for determining a value of the parameter. The second set of data obtained for each of the objects is used as input in a machine learning algorithm and its associated reference value is used as output target.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 5, 2019
    Inventors: TOM HILBERT, TOBIAS KOBER
  • Publication number: 20190318197
    Abstract: Organ tissue properties of a patient are automatically compared with organ tissue properties of a healthy subject group. A population norm for the organ tissue properties is determined by: selecting at least two different tissue properties of the organ; determining for each tissue property previously selected and for each subject of said group a quantitative tissue property map; for each subject of the group, calculating a joint histogram from all the quantitative tissue property maps obtained for said subject; and determining an averaged joint histogram from all subjects of the healthy group, thus defining the population norm. A comparison is automatically performed of the averaged joint histogram with a patient joint histogram obtained for the organ tissue properties of the patient, by calculating a statistical deviation of values of a patient joint histogram relative to values of the averaged joint histogram, and mapping the statistical deviation to the patient organ.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 17, 2019
    Inventors: TOM HILBERT, TOBIAS KOBER, GIAN FRANCO PIREDDA
  • Publication number: 20190162803
    Abstract: In a magnetic resonance (MR) apparatus, and model-based method, for identifying a nuclear spin-dependent attribute of a subject, MR signals are acquired in multiple repetitions of an MR data acquisition sequence that is changed from repetition-to-repetition so as to deliberately encode effects of magnetization transfer between nuclear spins into the acquired MR signals. A model is generated, composed of at least two molecule pools, in which a single magnetization transfer parameter is used that is derived from the MR signals in which the magnetization transfer is encoded. A nuclear spin-dependent attribute of the subject is then identified, by comparing at least one MR signal evolution from the subject to at least one signal evolution produced by the model.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 30, 2019
    Applicants: NEW YORK UNIVERSITY, SIEMENS HEALTHCARE GmbH
    Inventors: Martijn CLOOS, Tom HILBERT, Tobias KOBER
  • Patent number: 10197656
    Abstract: A method is disclosed for recording a parameter map of a target region via a magnetic resonance device. In at least one embodiment, an optimization method is used for the iterative reconstruction of the parameter map. In the optimization method, the deviation of undersampled magnetic resonance data of the target region present in the k-space for different echo times, magnetic resonance data of a portion of the k-space being present in each case for each echo time, is assessed from hypothesis data of a current hypothesis for the parameter map obtained as a function of the parameter from a model for the magnetization. To determine the magnetic resonance data of a portion of the k-space, undersampled raw data is initially acquired within the portions by way of the magnetic resonance device embodied for parallel imaging, and missing magnetic resonance data within the portions is completed by way of interpolation.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: February 5, 2019
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Tom Hilbert, Tobias Kober, Gunnar Krüger
  • Patent number: 10151814
    Abstract: A method for improving image homogeneity of image data acquired from balanced Steady-State Free Precision (bSSFP) sequences in magnetic resonance imaging. Multiple bSSFP sequences are performed with different radio frequency phase increments to create multiple bSSFP image volumes with different phase offsets ?. Each image has voxels whose intensity M is a function of a nuclear resonance signal (or magnetization) measured by the MR imaging apparatus. Per-voxel fitting of a mathematical signal model onto the measured magnetization of the field of view in function of the phase offsets ?. Then the spin density M0, the relaxation time ratio ? and the local phase offset ?? are determined from the fit for each voxel. A homogeneous image of the object is generated by calculating the signal intensity in each voxel, using the spin density M0 and the relaxation time ratio ?, wherein ?? is chosen such that ????=0°.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: December 11, 2018
    Assignees: Siemens Healthcare GmbH, Universitaetsspital Basel
    Inventors: Oliver Bieri, Tom Hilbert, Tobias Kober, Gunnar Krueger, Damien Nguyen
  • Publication number: 20180286088
    Abstract: The disclosure includes a method for generating quantitative magnetic resonance (MR) images of an object under investigation. A first MR data set of the object under investigation is captured in an undersampled raw data space, wherein the object under investigation is captured in a plurality of 2D slices, in which the resolution in a slice plane of the slices is in each case higher than perpendicular to the slice plane, wherein the plurality of 2D slices are in each case shifted relative to one another by a distance which is smaller than the resolution perpendicular to the slice plane. Further MR raw data points of the first MR data set are reconstructed with the assistance of a model using a cost function which is minimized. The cost function takes account of the shift of the plurality of 2D slices perpendicular to the slice plane.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 4, 2018
    Inventors: Tom Hilbert, Tobias Kober
  • Patent number: 9846922
    Abstract: A method detects phase-encoding ghosting in a MR image of an object to be imaged and mitigates the corresponding artifact in the MR image. The method includes acquiring MRI raw data of the object by a MRI apparatus. The MRI apparatus has multiple receiver channels for acquiring the MRI raw data. An artifact map of at least one part of the object to be imaged is calculated from the MRI raw data, the artifact map is configured for highlighting artifact appearing in the MR image. An outlier mask representing detected phase-encoding artifact is created in the artifact map. The phase-encode ghosting in the MR image is mitigated by using the previously obtained artifact map and the outlier mask for obtaining an improved MR image.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: December 19, 2017
    Assignee: Siemens Healthcare GmbH
    Inventors: Tom Hilbert, Gunnar Krueger
  • Publication number: 20160334487
    Abstract: A method for improving image homogeneity of image data acquired from balanced Steady-State Free Precision (bSSFP) sequences in magnetic resonance imaging. Multiple bSSFP sequences are performed with different radio frequency phase increments to create multiple bSSFP image volumes with different phase offsets ?. Each image has voxels whose intensity M is a function of a nuclear resonance signal (or magnetization) measured by the MR imaging apparatus. Per-voxel fitting of a mathematical signal model onto the measured magnetization of the field of view in function of the phase offsets ?. Then the spin density M0, the relaxation time ratio ? and the local phase offset ?? are determined from the fit for each voxel. A homogeneous image of the object is generated by calculating the signal intensity in each voxel, using the spin density M0 and the relaxation time ratio ?, wherein ?? is chosen such that ????=0°.
    Type: Application
    Filed: April 20, 2016
    Publication date: November 17, 2016
    Inventors: OLIVER BIERI, TOM HILBERT, TOBIAS KOBER, GUNNAR KRUEGER, DAMIEN NGUYEN
  • Publication number: 20160148351
    Abstract: A method detects phase-encoding ghosting in a MR image of an object to be imaged and mitigates the corresponding artifact in the MR image. The method includes acquiring MRI raw data of the object by a MRI apparatus. The MRI apparatus has multiple receiver channels for acquiring the MRI raw data. An artifact map of at least one part of the object to be imaged is calculated from the MRI raw data, the artifact map is configured for highlighting artifact appearing in the MR image. An outlier mask representing detected phase-encoding artifact is created in the artifact map. The phase-encode ghosting in the MR image is mitigated by using the previously obtained artifact map and the outlier mask for obtaining an improved MR image.
    Type: Application
    Filed: November 23, 2015
    Publication date: May 26, 2016
    Inventors: TOM HILBERT, GUNNAR KRUEGER
  • Publication number: 20150285879
    Abstract: A method is disclosed for recording a parameter map of a target region via a magnetic resonance device. In at least one embodiment, an optimization method is used for the iterative reconstruction of the parameter map. In the optimization method, the deviation of undersampled magnetic resonance data of the target region present in the k-space for different echo times, magnetic resonance data of a portion of the k-space being present in each case for each echo time, is assessed from hypothesis data of a current hypothesis for the parameter map obtained as a function of the parameter from a model for the magnetization. To determine the magnetic resonance data of a portion of the k-space, undersampled raw data is initially acquired within the portions by way of the magnetic resonance device embodied for parallel imaging, and missing magnetic resonance data within the portions is completed by way of interpolation.
    Type: Application
    Filed: March 25, 2015
    Publication date: October 8, 2015
    Inventors: Tom HILBERT, Tobias KOBER, Gunnar KRÜGER