Patents by Inventor Tom K. Cho

Tom K. Cho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100151127
    Abstract: Embodiments of the present invention generally provide apparatus and methods for preventing contamination within a processing system due to substrate breakage. In one embodiment, an acoustic detection mechanism is disposed on or within a process chamber to monitor conditions within the process chamber. In one embodiment, the acoustic detection mechanism detects conditions indicative of substrate breakage within the process chamber. In one embodiment, the acoustic detection mechanism detects conditions that are known to lead to substrate breakage within the process chamber. In one embodiment, the acoustic detection mechanism is combined with an optical detection mechanism. By early detection of substrate breakage or conditions known to lead to substrate breakage, the process chamber may be taken off line and repaired prior to contamination of the entire process system.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 17, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Tom K. Cho, Lun Tsuei, Kuan-Yuan Peng, Kyle S. Reinke, Brian Sy-Yuan Shieh
  • Publication number: 20100136216
    Abstract: Embodiments of the present invention generally provide apparatus and methods for altering the flow and pressure differential of process gases supplied across a showerhead of a processing chamber to provide improved deposition uniformity across the surface of a substrate disposed therein. In one embodiment, a blocker plate is disposed between a backing plate and a showerhead. In one embodiment, the distance between the blocker plate and the showerhead is adjustable. In another embodiment, the blocker plate has a non-planar surface contour. In another embodiment, a regional blocker plate is disposed between a backing plate and a showerhead. In another embodiment, a central blocker plate and a peripheral blocker plate are disposed between a backing plate and a showerhead.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Lun Tsuei, Alan Tso, Tom K. Cho, Brian Sy-Yuan Shieh
  • Publication number: 20100112212
    Abstract: Embodiments of the present invention generally provide apparatus and methods for altering the contour of a gas distribution plate within a process chamber without breaking vacuum conditions within the chamber. In one embodiment, a central support device adjusted to vary the height of a central region of a gas distribution plate with respect to the periphery of the gas distribution plate. In another embodiment, a plurality of central support devices is adjusted to vary the height of a central region of a gas distribution plate with respect to the periphery of the plate. In yet another embodiment, a plurality of central support devices and a plurality of mid-range support devices are adjusted to vary the height of certain regions of the gas distribution plate with respect to other regions of the gas distribution plate. In one embodiment, the contour of the gas distribution plate is altered based on changes detected within the process chamber.
    Type: Application
    Filed: October 23, 2009
    Publication date: May 6, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Lin Zhang, Lun Tsuei, Alan Tso, Tom K. Cho, Brian Sy-Yuan Shieh
  • Publication number: 20100104754
    Abstract: Embodiments of the present invention generally provide apparatus and methods for introducing process gases into a processing chamber at a plurality of locations. In one embodiment, a central region of a showerhead and corner regions of a showerhead are fed process gases from a central gas source with a first mass flow controller regulating the flow in the central region and a second mass flow controller regulating the flow in the corner regions. In another embodiment, a central region of a showerhead is fed process gases from a first gas source and corner regions of the showerhead are fed process gases from a second gas source. In another embodiment, a central region of a showerhead is fed process gases from a first gas source and each corner region of the showerhead is fed process gases from a separate gas source.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 29, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALAN TSO, Lun Tsuei, Tom K. Cho, Brian Sy-Yuan Shieh
  • Patent number: 7692171
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: April 6, 2010
    Inventors: Andrzei Kaszuba, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Tom K. Cho, Hichem M'Saad, Scott A. Hendrickson, Dustin W. Ho, Thomas Nowak
  • Publication number: 20100037823
    Abstract: The present invention generally relates to a gas distribution showerhead and a shadow frame for an apparatus. By extending the corners of the gas distribution showerhead the electrode area may be expanded relative to the anode and thus, uniform film properties may be obtained. Additionally, the expanded corners of the gas distribution showerhead may have gas passages extending therethrough. In one embodiment, hollow cathode cavities may be present on the bottom surface of the showerhead without permitting gas to pass therethrough. The shadow frame in the apparatus may also have its corner areas extended out to enlarge the anode in the corner areas of the substrate being processed and thus, may lead to deposition of a material on the substrate having substantially uniform properties.
    Type: Application
    Filed: August 7, 2009
    Publication date: February 18, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: TOM K. CHO, Zheng Yuan, Brian Sy-Yuan Shieh
  • Publication number: 20100021273
    Abstract: The present invention embodies processing systems and vacuum chambers equipped to process substrates for flat panel displays, solar cells, or other electronic devices. The processing system and/or the vacuum chambers as well as their components and supporting structure are constructed of less costly materials and in a more energy efficient manner than that of current large area substrate processing systems. In one embodiment, the processing system chamber bodies and their supporting structures are constructed of reinforced concrete. In one embodiment, system processing chambers include a vacuum tight lining disposed inside reinforced concrete chamber bodies.
    Type: Application
    Filed: July 21, 2009
    Publication date: January 28, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: ALEXANDER S. POLYAK, TOM K. CHO, JOSEPH YUDOVSKY, ANTHONY VESCI
  • Patent number: 7622005
    Abstract: Apparatus and methods for distributing gases into a processing chamber are disclosed. In one embodiment, the apparatus includes a gas distribution plate having a plurality of apertures disposed therethrough and a blocker plate having both a plurality of apertures disposed therethrough and a plurality of feed through passageways disposed therein. A first gas pathway delivers a first gas through the plurality of apertures in the blocker plate with sufficient pressure drop to more evenly distribute the gases prior to passing through the gas distribution plate. A bypass gas pathway delivers a second gas through the plurality of feed through passageways in the blocker plate and to areas around the blocker plate prior to the second gas passing through the gas distribution plate.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: November 24, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Tom K. Cho, Daemian Raj
  • Patent number: 7582167
    Abstract: In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: September 1, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andrzej Kaszuba, Sophia M. Velastegui, Visweswaren Sivaramakrishnan, Pyongwon Yim, Mario David Silvetti, Tom K. Cho, Indrajit Lahiri, Surinder S. Bedi
  • Patent number: 7572337
    Abstract: Apparatus and methods for distributing gases into a processing chamber are disclosed. In one embodiment, the apparatus includes a gas distribution plate having a plurality of apertures disposed therethrough and a blocker plate having both a plurality of apertures disposed therethrough and a plurality of feed through passageways disposed therein. A first gas pathway delivers a first gas through the plurality of apertures in the blocker plate and the gas distribution plate. A bypass gas pathway delivers a second gas through the plurality of feed through passageways in the blocker plate and to areas around the blocker plate prior to the second gas passing through the gas distribution plate.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Ganesh Balasubramanian, Tom K. Cho, Deenesh Padhi, Thomas Nowak, Bok Hoen Kim, Hichem M'Saad, Daemian Raj
  • Patent number: 7566891
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Dale R. Du Bois, Sanjeev Baluja, Scott A. Hendrickson, Dustin W. Ho, Andrzei Kaszuba, Tom K. Cho
  • Patent number: 7498268
    Abstract: The present invention is directed to improving defect performance in semiconductor processing systems. In specific embodiments, an apparatus for processing semiconductor substrates comprises a chamber defining a processing region therein, and a substrate support disposed in the chamber to support a semiconductor substrate. At least one nozzle extends into the chamber to introduce a process gas into the chamber through a nozzle opening. The apparatus comprises at least one heat shield, each of which is disposed around at least a portion of one of the at least one nozzle. The heat shield has an extension which projects distally of the nozzle opening of the nozzle and which includes a heat shield opening for the process gas to flow therethrough from the nozzle opening. The heat shield decreases the temperature of nozzle in the processing chamber for introducing process gases therein to reduce particles.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: March 3, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Sudhir Gondhalekar, Padmanabhan Krishnaraj, Tom K. Cho, Muhammad Rasheed, Hemant Mungekar, Thanh N. Pham, Zhong Qiang Hua
  • Publication number: 20090047446
    Abstract: Apparatus and methods for distributing gases into a processing chamber are disclosed. In one embodiment, the apparatus includes a gas distribution plate having a plurality of apertures disposed therethrough and a blocker plate having both a plurality of apertures disposed therethrough and a plurality of feed through passageways disposed therein. A first gas pathway delivers a first gas through the plurality of apertures in the blocker plate with sufficient pressure drop to more evenly distribute the gases prior to passing through the gas distribution plate. A bypass gas pathway delivers a second gas through the plurality of feed through passageways in the blocker plate and to areas around the blocker plate prior to the second gas passing through the gas distribution plate.
    Type: Application
    Filed: October 22, 2008
    Publication date: February 19, 2009
    Inventors: Ganesh Balasubramanian, Juan Carlos Rocha-Alvarez, Tom K. Cho, Daemian Raj
  • Patent number: 7425716
    Abstract: Embodiments in accordance with the present invention relate to a number of techniques, which may be applied alone or in combination, to reduce charge damage of substrates exposed to electron beam radiation. In one embodiment, charge damage is reduced by establishing a robust electrical connection between the exposed substrate and ground. In another embodiment, charge damage is reduced by modifying the sequence of steps for activating and deactivating the electron beam source to reduce the accumulation of charge on the substrate. In still another embodiment, a plasma is struck in the chamber containing the e-beam treated substrate, thereby removing accumulated charge from the substrate. In a further embodiment of the present invention, the voltage of the anode of the e-beam source is reduced in magnitude to account for differences in electron conversion efficiency exhibited by different cathode materials.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: September 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Khaled A. Elsheref, Yuri Trachuk, Tom K. Cho, Girish A. Dixit, Hichem M'Saad, Derek Witty
  • Patent number: 7354501
    Abstract: The present invention is directed to an upper chamber design of a plasma CVD chamber which provides more uniform conditions for forming thin CVD films on a substrate. Embodiments of the invention improve temperature control of the upper chamber and improve particle performance by reducing or minimizing the temperature fluctuations on the dome between the deposition and non-deposition cycles. In accordance with an aspect of the present invention, an apparatus for processing semiconductor substrates comprises a chamber defining a plasma processing region therein. The chamber includes a bottom, a side wall, and a dome disposed on top of the side wall. The dome has a substantially flat dome top. A top RF coil is disposed above the dome top, and has an outer loop which is larger in size than the substrates to be processed in the chamber. A cold plate is disposed above the top RF coil, and is larger in size than the substrates to be processed in the chamber.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: April 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Sudhir Gondhalekar, Tom K. Cho, Rolf Guenther, Steve H. Kim, Mehrdad Moshfegh, Shigeru Takehiro, Thomas Kring, Tetsuya Ishikawa
  • Patent number: 7279049
    Abstract: In one embodiment, the invention is a guard ring for reducing particle entrapment along a moveable shaft of a substrate support. In one embodiment, the guard ring comprises a substantially annular guard ring positioned within a step formed in a sleeve that circumscribes the shaft. The guard ring is positioned to substantially seal a gap separating the shaft from the sleeve, so that the amount of particles and foreign matter that travel within or become trapped in the gap is substantially reduced. In another embodiment, a guard ring comprises a base portion having an inner perimeter and an outer perimeter, a first flange coupled to the inner perimeter, a second flange coupled to the outer perimeter, and a continuous channel separating the first flange from the second flange. The first flange is adapted to function as a spring that accommodates displacement of the shaft.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: October 9, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Andrzej Kaszuba, Sophia M. Velastegui, Visweswaren Sivaramakrishnan, Pyongwon Yim, Mario David Silvetti, Tom K. Cho, Indrajit Lahiri, Surinder S. Bedi
  • Patent number: 7141138
    Abstract: The present invention is directed to improving defect performance in semiconductor processing systems. In specific embodiments, an apparatus for processing semiconductor substrates comprises a chamber defining a processing region therein, and a substrate support disposed in the chamber to support a semiconductor substrate. At least one nozzle extends into the chamber to introduce a process gas into the chamber through a nozzle opening. The apparatus comprises at least one heat shield, each of which is disposed around at least a portion of one of the at least one nozzle. The heat shield has an extension which projects distally of the nozzle opening of the nozzle and which includes a heat shield opening for the process gas to flow therethrough from the nozzle opening. The heat shield decreases the temperature of nozzle in the processing chamber for introducing process gases therein to reduce particles.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: November 28, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Sudhir Gondhalekar, Padmanabhan Krishnaraj, Tom K. Cho, Muhammad Rasheed, Hemant Mungekar, Thanh N. Pham, Zhong Qiang Hua
  • Patent number: 7074298
    Abstract: The present invention is directed to the design of a plasma CVD chamber which provides more uniform conditions for forming thin CVD films on a substrate. In one embodiment, an apparatus for processing semiconductor substrates comprises a chamber defining a plasma processing region therein. The chamber includes a bottom, a side wall, and a dome disposed on top of the side wall. The dome has a dome top and having a side portion defining a chamber diameter. A top RF coil is disposed above the dome top. A side RF coil is disposed adjacent the side portion of the dome. The side RF coil is spaced from the top RF coil by a coil separation. A ratio of the coil separation to the chamber diameter is at least about 0.15, more desirably about 0.2–0.25.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 11, 2006
    Assignee: Applied Materials
    Inventors: Sudhir Gondhalekar, Tom K. Cho, Rolf Guenther, Shigeru Takehiro, Masayoshi Nohira, Tetsuya Ishikawa, Ndanka O. Mukuti
  • Publication number: 20040231798
    Abstract: A replaceable gas nozzle is insertable in a gas distributor ring of a substrate processing chamber and that can be shielded within the chamber. The replaceable gas nozzle has a longitudinal ceramic body having a channel to direct the flow of the gas into the chamber. The ceramic body includes a first external thread to mate with the gas distributor ring, and a second external thread to receive a heat shield. The channel has an inlet to receive the gas from the gas distributor ring and a pinhole outlet to release the gas into the chamber. A heat shield can be used to shield the nozzle extending into the chamber. The heat shield has a hollow member configured to be coupled with the nozzle that has an internal dimension sufficiently large to be disposed around at least a portion of the nozzle. The hollow member also has an extension which projects distally of the outlet of the nozzle and a heat shield opening for the process gas to flow therethrough from the nozzle outlet.
    Type: Application
    Filed: April 16, 2004
    Publication date: November 25, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Sudhir Gondhalekar, Padmanabhan Krishnaraj, Tom K. Cho, Muhammad Rasheed, Hemant Mungekar, Thanh N. Pham, Zhong Qiang Hua
  • Publication number: 20040126952
    Abstract: The present invention is directed to improving defect performance in semiconductor processing systems. In specific embodiments, an apparatus for processing semiconductor substrates comprises a chamber defining a processing region therein, and a substrate support disposed in the chamber to support a semiconductor substrate. At least one nozzle extends into the chamber to introduce a process gas into the chamber through a nozzle opening. The apparatus comprises at least one heat shield, each of which is disposed around at least a portion of one of the at least one nozzle. The heat shield has an extension which projects distally of the nozzle opening of the nozzle and which includes a heat shield opening for the process gas to flow therethrough from the nozzle opening. The heat shield decreases the temperature of nozzle in the processing chamber for introducing process gases therein to reduce particles.
    Type: Application
    Filed: July 28, 2003
    Publication date: July 1, 2004
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Sudhir Gondhalekar, Padmanabhan Krishnaraj, Tom K. Cho, Muhammad Rasheed, Hemant Mungekar, Thanh N. Pham, Zhong Qiang Hua