Patents by Inventor Tom Nelson Oder

Tom Nelson Oder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11821077
    Abstract: A sputtering target having a unitary body. The unitary body includes a planar substrate plate and a toroidal portion extending from a top surface of the substrate plate. The toroidal portion reduces non-uniform erosion against the plate caused by a magnetic field applied to the target. In use, the magnetic field is initially received at the toroidal portion. After the magnetic field wears down the toroidal portion, the magnetic field is received at the substrate plate.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: November 21, 2023
    Assignee: YOUNGSTOWN STATE UNIVERSITY
    Inventors: Constantin Virgil Solomon, Christopher Yaw Bansah, Tom Nelson Oder
  • Publication number: 20220195584
    Abstract: A sputtering target having a unitary body. The unitary body includes a planar substrate plate and a toroidal portion extending from a top surface of the substrate plate. The toroidal portion reduces non-uniform erosion against the plate caused by a magnetic field applied to the target. In use, the magnetic field is initially received at the toroidal portion. After the magnetic field wears down the toroidal portion, the magnetic field is received at the substrate plate.
    Type: Application
    Filed: December 17, 2020
    Publication date: June 23, 2022
    Inventors: Constantin Virgil SOLOMON, Christopher Yaw BANSAH, Tom Nelson ODER
  • Patent number: 9035323
    Abstract: Improved semiconductor devices are fabricated utilizing nickel gallide and refractory borides deposited onto a silicon carbide semiconductor substrate. Varying the deposition and annealing parameters of fabrication can provide a more thermally stable device that has greater barrier height and a low ideality. This improvement in the electrical properties allows use of Schottky barrier diodes in high power and high temperature applications. In one embodiment, a refractory metal boride layer is joined to a surface of a silicon carbide semiconductor substrate. The refractory metal boride layer is deposited on the silicon carbon semiconductor substrate at a temperature greater than 200° C. In another embodiment, a Schottky barrier diode is fabricated via deposition of nickel gallide on a SiC substrate.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: May 19, 2015
    Assignee: Youngstown State University
    Inventor: Tom Nelson Oder
  • Publication number: 20140327017
    Abstract: Improved semiconductor devices are fabricated utilizing nickel gallide and refractory borides deposited onto a silicon carbide semiconductor substrate. Varying the deposition and annealing parameters of fabrication can provide a more thermally stable device that has greater barrier height and a low ideality. This improvement in the electrical properties allows use of Schottky barrier diodes in high power and high temperature applications. In one embodiment, a refractory metal boride layer is joined to a surface of a silicon carbide semiconductor substrate. The refractory metal boride layer is deposited on the silicon carbon semiconductor substrate at a temperature greater than 200° C. In another embodiment, a Schottky barrier diode is fabricated via deposition of nickel gallide on a SiC substrate.
    Type: Application
    Filed: July 15, 2014
    Publication date: November 6, 2014
    Applicant: YOUNGSTOWN STATE UNIVERSITY
    Inventor: Tom Nelson Oder
  • Patent number: 8816356
    Abstract: Improved semiconductor devices are fabricated utilizing nickel gallide and refractory borides deposited onto a silicon carbide semiconductor substrate. Varying the deposition and annealing parameters of fabrication can provide a more thermally stable device that has greater barrier height and a low ideality. This improvement in the electrical properties allows use of Schottky barrier diodes in high power and high temperature applications. In one embodiment, a refractory metal boride layer is joined to a surface of a silicon carbide semiconductor substrate. The refractory metal boride layer is deposited on the silicon carbon semiconductor substrate at a temperature greater than 200° C. In another embodiment, a Schottky barrier diode is fabricated via deposition of nickel gallide on a SiC substrate.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: August 26, 2014
    Assignee: Youngstown State University
    Inventor: Tom Nelson Oder
  • Publication number: 20110241021
    Abstract: Improved semiconductor devices are fabricated utilizing nickel gallide and refractory borides deposited onto a silicon carbide semiconductor substrate. Varying the deposition and annealing parameters of fabrication can provide a more thermally stable device that has greater barrier height and a low ideality. This improvement in the electrical properties allows use of Schottky barrier diodes in high power and high temperature applications. In one embodiment, a refractory metal boride layer is joined to a surface of a silicon carbide semiconductor substrate. The refractory metal boride layer is deposited on the silicon carbon semiconductor substrate at a temperature greater than 200° C. In another embodiment, a Schottky barrier diode is fabricated via deposition of nickel gallide on a SiC substrate.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 6, 2011
    Inventor: Tom Nelson Oder