Patents by Inventor Tomohito Mizuno

Tomohito Mizuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120232831
    Abstract: In a method of estimating the Curie temperature distribution of a plurality of magnetic grains contained in a magnetic recording layer, measurement values of first and second parameters are obtained for each of different temperatures of the magnetic recording layer which is used as the measurement subject. The first parameter has such a property that the absolute value of the first parameter for each magnetic grain takes on the minimum value when the temperature of each magnetic grain reaches a predetermined temperature, wherein the predetermined temperature varies according to the Curie temperature of each magnetic grain in such a manner as to increase as the Curie temperature increases, and to decrease as the Curie temperature decreases. The second parameter is related to the standard deviation of the coervicity distribution of the magnetic grains divided by the coervicity of the magnetic recording layer.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: TDK CORPORATION
    Inventors: Tomohito MIZUNO, Koji SHIMAZAWA, Hiroshi KIYONO
  • Publication number: 20120230169
    Abstract: A thermally-assisted magnetic recording method includes first and second steps. The first step applies heat to part of a hard disk medium and forms a moving high-temperature region in a magnetic recording layer of the hard disk medium. The high-temperature region is higher in temperature than a region therearound and has a temperature equal to or higher than the maximum coercivity vanishing temperature of a plurality of magnetic grains contained in the magnetic recording layer. At least one magnetic grain that is adjacent to the rear end of the high-temperature region in the direction of movement of the high-temperature region has a coercivity of a value other than 0. The second step applies a write magnetic field to the hard disk medium such that the write magnetic field applied to the at least one magnetic grain adjacent to the rear end of the high-temperature region is 3 kOe or smaller in magnitude.
    Type: Application
    Filed: March 11, 2011
    Publication date: September 13, 2012
    Applicant: TDK CORPORATION
    Inventors: Koji SHIMAZAWA, Tomohito MIZUNO, Hiroshi KIYONO
  • Patent number: 8203808
    Abstract: In an MR element constituted in such a manner that a pinned layer whose magnetization direction is fixed, a nonmagnetic spacer layer, and a free layer whose magnetization direction is changed according to an external magnetic field, are laminated in this order; the free layer has a multilayer constitution including a magnetic body mixed with an element having 4f electrons at a certain ratio. Specifically, the first layer in contact with the spacer layer, the third layer, the fifth layer, and the seventh layer of the free layer are formed by mixing Nd, Sm, Gd, or Tb into CoFe. The second layer and the sixth layer of the free layer are formed by mixing Nd, Sm, Gd, or Tb into NiFe. The third layer of the free layer is Cu. A damping constant of the free layer is greater than 0.018.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 19, 2012
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya
  • Patent number: 8169731
    Abstract: Provided is a near-field light transducer with a propagation edge in which the generation of defects is suppressed. The transducer is formed of a Ag alloy and comprises an edge, the edge comprising a portion to be coupled with a light in a surface plasmon mode, the edge extending from the portion to a near-field light generating end surface, and the edge being configured to propagate surface plasmon excited by the light. Further, a curvature radius of the rounded edge is set in the range from 6.25 nm to 20 nm. In the edge and its vicinity, the generation of defects such as cracking and chipping is suppressed. Thereby improved are a propagation efficiency of surface plasmon and a light use efficiency of the transducer. The Ag alloy preferably contains at least one element selected from a group of Pd, Au, Cu, Ru, Rh and Ir.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 1, 2012
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Koji Shimazawa, Tsutomu Chou
  • Patent number: 8149547
    Abstract: An MR element includes a pinned layer, a free layer and a nonmagnetic space layer or a tunnel barrier layer sandwiched between the pinned layer and the free layer. A magnetization direction of the free layer is substantially perpendicular to a film surface thereof, and a magnetization direction of the pinned layer is substantially parallel to a film surface thereof.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: April 3, 2012
    Assignee: TDK Corporation
    Inventors: Naoki Ohta, Satoshi Miura, Tomohito Mizuno
  • Patent number: 8111591
    Abstract: A heat-assisted magnetic recording head includes a slider, and an edge-emitting laser diode fixed to the slider. The slider includes: a substrate; and an MR element, two reproduction wiring layers, a coil, two recording wiring layers, a magnetic pole, a near-field light generating element, and a waveguide that are stacked above the top surface of the substrate. The two reproduction wiring layers supply a sense current to the MR element. The two recording wiring layers supply a coil current to the coil, The laser diode has an emitting end face including an emission part for emitting laser light, and a bottom surface, The laser diode is arranged so that the bottom surface faces the top surface of the slider. As viewed from above, the laser diode does not overlap the two reproduction wiring layers but overlaps at least one of the two recording wiring layers.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 7, 2012
    Assignee: TDK Corporation
    Inventors: Koji Shimazawa, Tomohito Mizuno, Eiji Komura
  • Patent number: 8094420
    Abstract: The invention provides a magnetoresistive device of the CCP (current perpendicular to plane) structure comprising a magnetoresistive unit sandwiched between soft magnetic shield layers with a current applied in the stacking direction. The magnetoresistive unit comprises a nonmagnetic intermediate layer sandwiched between ferromagnetic layers. A planar framework positions the soft magnetic shield layers and comprises a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer constructed by repeating the stacking of a multilayer unit comprising a nonmagnetic underlay layer and a high coercive material layer. The nonmagnetic gap layer is designed and located such that a magnetic flux given out of the bias magnetic field-applying layer is efficiently directed along a closed magnetic path around the framework to form a single domain of magnetization.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: January 10, 2012
    Assignee: TDK Corporation
    Inventors: Toshiyuki Ayukawa, Takahiko Machita, Daisuke Miyauchi, Tsutomu Chou, Koji Shimazawa, Shinji Hara, Tomohito Mizuno, Yoshihiro Tsuchiya
  • Patent number: 8085512
    Abstract: A magnetic field detecting element comprises: a stack which includes first, second and third magnetic layers whose magnetization directions depend upon an external magnetic field, the second magnetic layer being positioned between the first magnetic layer and the third magnetic layer, a first non-magnetic intermediate layer sandwiched between the first magnetic layer and the second magnetic layer, and a second non-magnetic intermediate layer sandwiched between the second magnetic layer and the third magnetic layer, wherein the stack is adapted such that sense current flows in a direction that is perpendicular to a film surface thereof; and a bias magnetic layer which is provided on a side of the stack, the side being opposite to an air bearing surface of the stack.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: December 27, 2011
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Shinji Hara, Koji Shimazawa, Tsutomu Chou
  • Patent number: 8077436
    Abstract: A magnetoresistance effect element comprises: a magnetoresistive stack including: first, second and third magnetic layers whose magnetization directions change in accordance with an external magnetic field, said second magnetic layer being located between said first magnetic layer and the third magnetic layer; a first non-magnetic intermediate layer sandwiched between said first and second magnetic layers; and a second non-magnetic intermediate layer sandwiched between said second and third magnetic layers; wherein sense current is adapted to flow in a direction perpendicular to a film plane; a bias magnetic layer provided on an opposite side of said magnetoresistive stack from an air bearing surface.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: December 13, 2011
    Assignee: TDK Corporation
    Inventors: Kei Hirata, Satoshi Miura, Tomohito Mizuno, Takeo Kagami
  • Patent number: 8031444
    Abstract: The semiconductor oxide layer that forms a part of the spacer layer in the inventive giant magnetoresistive device (CPP-GMR device) is composed of zinc oxide of wurtzite structure that is doped with a dopant given by at least one metal element selected from the group consisting of Zn, Ge, V, and Cr in a content of 0.05 to 0.90 at %: there is the advantage obtained that ever higher MR ratios are achievable while holding back an increase in the area resistivity AR.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 4, 2011
    Assignee: TDK Corporation
    Inventors: Tsutomu Chou, Tomohito Mizuno, Koji Shimazawa, Yoshihiro Tsuchiya, Shinji Hara, Hironobu Matsuzawa
  • Patent number: 8000066
    Abstract: The thickness of the semiconductor layer forming a part of the spacer layer is set in the thickness range for a transitional area showing conduction performance halfway between ohmic conduction and semi-conductive conduction in relation to the junction of the semiconductor layer with the first nonmagnetic metal layer and the second nonmagnetic metal layer. This permits the specific resistance of the spacer layer to be greater than that of an ohmic conduction area, so that spin scattering and diffusion depending on a magnetized state increases, resulting in an increase in the MR ratio. The CPP-GMR device can also have a suitable area resistivity (AR) value. If the device can have a suitable area resistivity and a high MR ratio, it is then possible to obtain more stable output power in low current operation. The device is also lower in resistance than a TMR device, so that significant noise reductions are achievable.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: August 16, 2011
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Kei Hirata
  • Patent number: 7961438
    Abstract: The invention provides a magnetoresistive device of the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first shield layer and a second shield layer which are located and formed such that the magnetoresistive unit is sandwiched between them with a sense current applied in a stacking direction. The magnetoresistive unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that the nonmagnetic intermediate layer is sandwiched between them. The first shield layer and the second shield layer are each controlled by magnetization direction control means in terms of magnetization direction to create an antiparallel magnetization state where their magnetizations are in opposite directions.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 14, 2011
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Koji Shimazawa, Yoshihiro Tsuchiya
  • Patent number: 7957108
    Abstract: An MR element includes a free layer having a direction of magnetization that changes in response to an external magnetic field, a pinned layer having a fixed direction of magnetization, and a spacer layer disposed between these layers. The spacer layer includes a first region, a second region and a third region that are each in the form of a layer and that are arranged in a direction intersecting the plane of each of the foregoing layers. The second region is sandwiched between the first region and the third region. The first region and the third region are each composed of an oxide semiconductor, and the second region includes at least a nonmagnetic conductor phase.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: June 7, 2011
    Assignee: TDK Corporation
    Inventors: Tsutomu Chou, Tomohito Mizuno
  • Patent number: 7944650
    Abstract: An MR element includes an MR stack including a first ferromagnetic layer, a second ferromagnetic layer, and a spacer layer disposed between the first and the second ferromagnetic layer. The MR stack has an outer surface, and the spacer layer has a periphery located in the outer surface of the MR stack. The magnetoresistive element further includes a layered film that touches the periphery of the spacer layer. The spacer layer includes a semiconductor layer formed using an oxide semiconductor as a material. The layered film includes a first layer, a second layer, and a third layer stacked in this order. The first layer is formed of the same material as the semiconductor layer, and touches the periphery of the spacer layer. The second layer is a metal layer that forms a Schottky barrier at the interface between the first layer and the second layer. The third layer is an insulating layer.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: May 17, 2011
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Koji Shimazawa, Tomohito Mizuno, Shinji Hara, Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7929257
    Abstract: A magnetic thin film has a pinned layer whose magnetization direction is fixed with respect to an external magnetic field, a free layer whose magnetization direction is changed according to the external magnetic field, and a spacer layer which is sandwiched between said pinned layer and said free layer. Sense current is configured to flow in a direction that is perpendicular to film surfaces of said pinned layer, said spacer layer, and said free layer. Said spacer layer has a CuZn metal alloy which includes an oxide region, said oxide region consisting of an oxide of any of Al, Si, Cr, Ti, Hf, Zr, Zn, and Mg.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: April 19, 2011
    Assignee: TDK Corporation
    Inventors: Takahiko Machita, Tomohito Mizuno, Yoshihiro Tsuchiya, Daisuke Miyauchi, Shinji Hara
  • Patent number: 7920362
    Abstract: A giant magneto-resistive effect device having a CPP structure including a spacer layer, and a fixed magnetization layer and a free layer stacked one upon another with said spacer layer interposed between them. The free layer functions such that its magnetization direction changes depending on an external magnetic field. The spacer layer comprises a first nonmagnetic metal layer and a second nonmagnetic metal layer, each formed of a nonmagnetic metal material. A semiconductor oxide layer is interposed between them. The semiconductor oxide layer forming a part of the spacer layer comprises zinc oxide as a main ingredient.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 5, 2011
    Assignee: TDK Corporation
    Inventors: Shinji Hara, Kei Hirata, Koji Shimazawa, Yoshihiro Tsuchiya, Tomohito Mizuno
  • Patent number: 7916431
    Abstract: An MR element includes a stack of layers including a first ferromagnetic layer, a second ferromagnetic layer, and a spacer layer disposed between the first and the second ferromagnetic layer. The stack of layers has an outer surface, and the spacer layer has a periphery located in the outer surface of the stack of layers. The magnetoresistive element further includes an insulating film that touches the periphery of the spacer layer. The spacer layer includes a layer made of an oxide semiconductor composed of an oxide of a first metal. The insulating film includes a contact film that touches the periphery of the spacer layer and that is made of an oxide of a second metal having a Pauling electronegativity lower than that of the first metal by 0.1 or more.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: March 29, 2011
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Tomohito Mizuno, Shinji Hara, Daisuke Miyauchi, Takahiko Machita
  • Patent number: 7895731
    Abstract: A method for manufacturing a magnetic field detecting element having a free layer whose magnetization direction is variable depending on an external magnetic field and a pinned layer whose magnetization direction is fixed and these are stacked with an electrically conductive, nonmagnetic spacer layer sandwiched therebetween, wherein sense current flows in a direction perpendicular to film planes of the magnetic field detecting element. The method comprises: forming a spacer adjoining layer adjacent to the spacer layer, Heusler alloy layer, and a metal layer successively in this order; and forming either at least a part of the pinned layer or the free layer by heating the spacer adjoining layer, the Heusler alloy layer, and the metal layer. The spacer adjoining layer has a layer chiefly made of cobalt and iron. The Heusler alloy layer includes metal which is silver, gold, copper, palladium, or platinum, or an alloy thereof. The metal layer is made of the same.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 1, 2011
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Koji Shimazawa, Kei Hirata, Keita Kawamori
  • Patent number: 7894165
    Abstract: The invention provides a magneto-resistive effect device having a CPP (current perpendicular to plane) structure comprising a nonmagnetic spacer layer, and a fixed magnetized layer and a free layer stacked one upon another with said nonmagnetic spacer layer sandwiched between them, with a sense current applied in a stacking direction, wherein said free layer functions such that its magnetization direction changes depending on an external magnetic field, and is made up of a multilayer structure including a Heusler alloy layer, wherein an Fe layer is formed on one of both planes of said Heusler alloy layer in the stacking direction, wherein said one plane is near to at least a nonmagnetic spacer layer side, and said fixed magnetization layer is made up of a multilayer structure including a Heusler alloy layer, wherein Fe layers are formed on both plane sides of said Heusler alloy layer in the stacking direction with said Heusler alloy layer sandwiched between them.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: February 22, 2011
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Koji Shimazawa
  • Publication number: 20110038236
    Abstract: Provided is a near-field light transducer with a propagation edge in which the generation of defects is suppressed. The transducer is formed of a Ag alloy and comprises an edge, the edge comprising a portion to be coupled with a light in a surface plasmon mode, the edge extending from the portion to a near-field light generating end surface, and the edge being configured to propagate surface plasmon excited by the light. Further, a curvature radius of the rounded edge is set in the range from 6.25 nm to 20 nm. In the edge and its vicinity, the generation of defects such as cracking and chipping is suppressed. Thereby improved are a propagation efficiency of surface plasmon and a light use efficiency of the transducer. The Ag alloy preferably contains at least one element selected from a group of Pd, Au, Cu, Ru, Rh and Ir.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 17, 2011
    Applicant: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Koji Shimazawa, Tsutomu Chou