Patents by Inventor Tomoki Yamayoshi

Tomoki Yamayoshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11819956
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using a flux includes a brazing material cladded onto at least one side surface of a core material. An oxide is formed on a surface of the aluminum alloy brazing sheet by brazing heating, the oxide including any one or two or more of Mg, Li, and Ca and having a volume change ratio of 0.990 or less to a surface oxide film formed before brazing heating, and an atomic molar ratio of Mg, Li, and Ca to Al in the oxide formed on the surface of the aluminum alloy brazing sheet before brazing heating is 0.50 or less. The present invention provides an aluminum alloy brazing sheet having excellent brazability in brazing in an inert gas atmosphere without using a flux, and a method for manufacturing the same.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: November 21, 2023
    Assignee: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Patent number: 11813687
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using flux includes a core material of aluminum or aluminum alloy, and a brazing material of aluminum alloy including Si of 4.0 mass % to 13.0 mass % and cladding one side surface or both side surfaces of the core material. One or both of the core material and the brazing material includes any one or two or more types of X atoms (X is Mg, Li, Be, Ca, Ce, La, Y, and Zr). The aluminum alloy brazing sheet is a brazing sheet in which oxide particles including the X atoms and having a volume change ratio of 0.99 or lower with respect to an oxide film before brazing heating are formed on a surface thereof, by brazing heating.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: November 14, 2023
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Atsushi Fukumoto
  • Patent number: 11813700
    Abstract: An aluminum alloy brazing sheet is formed of a four-layer material formed of a brazing material, an intermediate material, a core material, and a brazing material. The intermediate material comprises Mg of 0.40 to 6.00 mass %, and has a total of contents of Mn, Cr, and Zr being 0.10 mass % or more. The core material comprises Mg of 0.20 to 2.00 mass % and comprises one or two or more of Mn of 1.80 mass % or less, Si of 1.05 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: November 14, 2023
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Takahiro Shinoda
  • Patent number: 11780034
    Abstract: A brazing sheet (1) includes a core material (11) composed of an Al alloy that contains 0.20-3.0 mass % of Mg; and a filler material (12) layered on the core material and composed of an Al alloy that contains Mg, 6.0-13.0 mass % of Si, and more than 0.050 mass % and 1.0 mass % or less of Bi. The Mg concentration of the filler material becomes continuously lower in a direction from a boundary (122) with the core material to an outermost surface (121). The Mg concentration of the filler material is 0.150 mass % or less at a first depth from the outermost surface that is ? of a thickness (tf) of the filler material and is 5-90% of the amount of Mg in the core material at a second depth from the outermost surface that is ? of the thickness of the filler material.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: October 10, 2023
    Assignees: UACJ CORPORATION, DENSO CORPORATION
    Inventors: Shinichi Nakamura, Tomoki Yamayoshi, Takeyoshi Dokou, Takahiro Shinoda, Shogo Yamada, Yoshihiko Sonoda, Naoki Sugimoto, Nobuhiro Honma, Taketoshi Toyama
  • Patent number: 11772205
    Abstract: A brazing sheet (1) includes a core material (11) composed of an Al alloy containing 0.40-2.50 mass % Mg; and a filler material (12) composed of an Al alloy containing Mg, 6.0-13.0 mass % Si, and 0.010-0.050 mass % Bi. The filler material is layered on a side of the core material and is exposed at an outermost surface (121). The Mg concentration in the filler material continuously decreases in a direction from a boundary (122) with the core material toward the outermost surface. The Mg concentration (c1/8) is 0.080 mass % or less at a depth (position P1/8) from the outermost surface that is ? of the thickness tf of the filler material (12). The Mg concentration (c7/8) is 15-45% of the amount of Mg in the core material at a depth (position P7/8) from the outermost surface that is ? of the thickness tf of the filler material.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: October 3, 2023
    Assignee: UACJ CORPORATION
    Inventors: Shinichi Nakamura, Tomoki Yamayoshi, Takeyoshi Dokou
  • Publication number: 20230166364
    Abstract: An aluminum alloy bare material for a member to be brazed by flux-free brazing to a brazing sheet including a brazing material formed of an aluminum alloy that includes 3.00 to 13.00 mass % of Si and less than 0.10 mass % (including 0 mass %) of Mg with the balance being Al and inevitable impurities, in which the aluminum alloy bare material for the member to be brazed is formed of an aluminum alloy including 0.004 to 6.00 mass % of Zn and 0.004 to 3.00 mass % of Mg with the balance being Al and inevitable impurities. According to the present invention, aluminum alloy materials can be provided for members to be well brazed to the brazing sheet when an aluminum material is brazed by flux-free brazing.
    Type: Application
    Filed: March 25, 2021
    Publication date: June 1, 2023
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Shinichi Nakamura, Taichi Suzuki, Hirokazu Tanaka, Nobuhiro Honma, Shogo Yamada, Taro Fukuda, Yosuke Uchida
  • Publication number: 20230158613
    Abstract: A brazing-sheet manufacturing method includes superposing a core-material slab on or adjacent to at least one surface of a filler-material slab to form a clad slab, the core-material slab being composed of an aluminum material and the filler-material slab being composed of an Al—Si—Mg series alloy. Then, the clad slab is hot rolled to form a clad sheet having a core material layer composed of the aluminum material of the core-material slab and a filler material layer composed of the Al—Si—Mg series alloy of the filler-material slab. Then, the clad sheet is subjected to one or more passes of cold rolling. Either between cold-rolling passes or after the completion of the cold rolling, a surface of the clad sheet is etched using a liquid etchant that includes one or more inorganic acids. The liquid etchant does not contain fluorine atoms.
    Type: Application
    Filed: March 22, 2021
    Publication date: May 25, 2023
    Inventors: Yutaka YANAGAWA, Tomoki YAMAYOSHI, Tatsuya IDE, Taichi SUZUKI
  • Publication number: 20230150048
    Abstract: Provided is a brazed aluminum member brazed with a member formed of a brazing sheet, in which two or more grooves are provided on a surface of the brazed aluminum member in a fillet forming area, a groove depth (D1) of the grooves is 0.005 mm to 0.50 mm, a groove width (W1) of the grooves is 0.005 mm to 0.50 mm, a ratio (W1/D1) of the groove width (W1) to the groove depth (D1) is 10.00 or less, and a space (P1) between adjacent grooves is 0.00 mm to 0.30 mm. The present invention provides an aluminum alloy material and a method for manufacturing a brazed body that can secure good brazing properties even when the clearance between the jointed members is large in the case where the aluminum material is brazed without using a flux.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 18, 2023
    Applicant: UACJ Corporation
    Inventors: Shinichi Nakamura, Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Publication number: 20230150069
    Abstract: Provided is a brazed aluminum member brazed with a member formed of a brazing sheet, in which two or more grooves are provided on a surface of the brazed aluminum member in a fillet forming area, a groove depth (D1) of the grooves is 0.005 mm to 0.50 mm, a groove width (W1) of the grooves is 0.005 mm to 0.50 mm, a ratio (W1/D1) of the groove width (W1) to the groove depth (D1) is 10.00 or less, and a space (P1) between adjacent grooves is 0.00 mm to 0.30 mm. The present invention can provide an aluminum material and a method for producing a brazed product that can secure good brazing properties even when the clearance between the jointed members is large in the case where the aluminum material is brazed without using a flux.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 18, 2023
    Applicant: UACJ Corporation
    Inventors: Shinichi Nakamura, Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Publication number: 20230134532
    Abstract: An aluminum alloy bare material for a member to be brazed by flux-free brazing to a brazing sheet including a brazing material formed of an aluminum alloy that includes 3.00 to 13.00 mass % of Si and 0.10 to 2.00 mass % of Mg with the balance being Al and inevitable impurities, in which the aluminum alloy bare material for the member to be brazed is formed of an aluminum alloy including 0.004 to 6.00 mass % of Zn and 0.004 to 3.00 mass % of Mg with the balance being Al and inevitable impurities. According to the present invention, aluminum alloy materials can be provided for members to be well brazed to the brazing sheet with the brazing material including Mg when an aluminum material is brazed by flux-free brazing.
    Type: Application
    Filed: March 25, 2021
    Publication date: May 4, 2023
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Shinichi Nakamura, Taichi Suzuki, Hirokazu Tanaka, Shogo Yamada, Taro Fukuda, Yosuke Uchida, Nobuhiro Honma
  • Publication number: 20230082095
    Abstract: A brazing sheet (1) includes a core material (11) composed of an Al alloy containing 0.40-2.50 mass % Mg; and a filler material (12) composed of an Al alloy containing Mg, 6.0-13.0 mass % Si, and 0.010-0.050 mass % Bi. The filler material is layered on a side of the core material and is exposed at an outermost surface (121). The Mg concentration in the filler material continuously decreases in a direction from a boundary (122) with the core material toward the outermost surface. The Mg concentration (c1/8) is 0.080 mass % or less at a depth (position P1/8) from the outermost surface that is ? of the thickness tf of the filler material (12). The Mg concentration (c7/8) is 15-45% of the amount of Mg in the core material at a depth (position P7/8) from the outermost surface that is ? of the thickness tf of the filler material.
    Type: Application
    Filed: March 30, 2020
    Publication date: March 16, 2023
    Inventors: Shinichi NAKAMURA, Tomoki YAMAYOSHI, Takeyoshi DOKOU
  • Patent number: 11571769
    Abstract: In a brazing sheet manufacturing method, a cladding slab is prepared by overlaying at least a core-material slab composed of an aluminum material and a filler-material slab composed of an Al—Si series alloy, in which a metal element that oxidizes more readily than Al is included in at least one of the slabs. A clad sheet is prepared by hot rolling this cladding slab, which then has at least a core material layer composed of the core-material slab and a filler material layer composed of the filler-material slab and disposed on at least one side of the core material. Then, a surface of the clad sheet is etched using a liquid etchant that contains an acid. Subsequently, the clad sheet is cold rolled to a desired thickness. In flux-free brazing, such a brazing sheet is capable of curtailing degradation in brazeability caused by fluctuations in dew point and oxygen concentration.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 7, 2023
    Assignee: UACJ CORPORATION
    Inventors: Yutaka Yanagawa, Tatsuya Ide, Taichi Suzuki, Tomoki Yamayoshi
  • Patent number: 11491586
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked in this order. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %, Si of 1.50 mass % or less, and Fe of 1.00 mass % or less, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities, and, in a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 8, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka
  • Patent number: 11491587
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %. Si of 1.50 mass % or less, Fe of 1.00 mass % or less, and Ti of 0.10 to 0.30 mass %, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities. In a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: November 8, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada
  • Publication number: 20220281040
    Abstract: An aluminum alloy brazing sheet is formed of a four-layer material formed of a brazing material, an intermediate material, a core material, and a. brazing material. The intermediate material comprises Mg of 0.40 to 6.00 mass %, and has a total of contents of Mn, Cr, and Zr being 0.10 mass % or more. The core material comprises Mg of 0.20 to 2.00 mass % and comprises one or two or more of Mn of 1.80 mass % or less, Si of 1.05 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m.
    Type: Application
    Filed: July 6, 2020
    Publication date: September 8, 2022
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Takahiro Shinoda
  • Publication number: 20220250195
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked in this order. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy includes Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %, Si of 1.50 mass % or less, and Fe of 1.00 mass % or less. The brazing material is formed of an aluminum alloy including Si of 4.00 to 13.00 mass % and one or two or more of Mn of 2.00 mass or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less.
    Type: Application
    Filed: July 6, 2020
    Publication date: August 11, 2022
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada, Takahiro Shinoda
  • Publication number: 20220184750
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using a flux includes a brazing material cladded onto at least one side surface of a core material. An oxide is formed on a surface of the aluminum alloy brazing sheet by brazing heating, the oxide including any one or two or more of Mg, Li, and Ca and having a volume change ratio of 0.990 or less to a surface oxide film formed before brazing heating, and an atomic molar ratio of Mg, Li, and Ca to Al in the oxide formed on the surface of the aluminum alloy brazing sheet before brazing heating is 0.50 or less. The present invention provides an aluminum alloy brazing sheet having excellent brazability in brazing in an inert gas atmosphere without using a flux, and a method for manufacturing the same.
    Type: Application
    Filed: April 3, 2020
    Publication date: June 16, 2022
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Publication number: 20220040803
    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using a flux includes an intermediate material and a brazing material cladded onto at least one side surface of a core material in this order from the core material side. An oxide is formed on a surface of the aluminum alloy brazing sheet by brazing heating, the oxide including any one or two or more of Mg, Li, and Ca and having a volume change ratio of 0.990 or less to a surface oxide film formed before brazing heating, and an atomic molar ratio of Mg, Li, and Ca to Al in the oxide formed on the surface of the aluminum alloy brazing sheet before brazing heating is 0.5 or less. The present invention provides an aluminum alloy brazing sheet having excellent brazability in brazing in an inert gas atmosphere without using a flux, and a method for manufacturing the same.
    Type: Application
    Filed: April 3, 2020
    Publication date: February 10, 2022
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Taichi Suzuki, Hirokazu Tanaka
  • Publication number: 20210394312
    Abstract: An aluminum alloy brazing sheet used for brazing of an aluminum material in an inert gas atmosphere or in vacuum is formed of a two-layer material in which a brazing material and a core material are stacked. The core material is formed of an aluminum alloy and has a grain size of 20 to 300 ?m, and the aluminum alloy contains Mn of 0.50 to 2.00 mass %, Mg of 0.40 to 2.00 mass %. Si of 1.50 mass % or less, Fe of 1.00 mass % or less, and Ti of 0.10 to 0.30 mass %, with the balance being aluminum and inevitable impurities. The brazing material is formed of an aluminum alloy containing Si of 4.00 to 13.00 mass % with the balance being aluminum and inevitable impurities. In a drop-type fluidity test, a ratio ? (?=Ka/Kb) of a fluid coefficient Ka is 0.50 or more.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 23, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka, Taketoshi Toyama, Naoki Sugimoto, Nobuhiro Honma, Shogo Yamada
  • Publication number: 20210394313
    Abstract: An aluminum alloy brazing sheet formed of a brazing material, an intermediate material, a core material, and a brazing material. The intermediate material contains Mg of 0.40 to 6.00 mass % and Zn exceeding 2.00 mass % and equal to or less than 8.00 mass %. The core material contains Mg of 0.40 to 2.00 mass % and one or two or more of Mn of 1.80 mass % or less, Si of 1.50 mass % or less, Fe of 1.00 mass % or less, Cu of 1.20 mass % or less, Ti of 0.30 mass % or less, Zr of 0.30 mass % or less, and Cr of 0.30 mass % or less. Each of the core material and the intermediate material has a grain size of 20 to 300 ?m, and each of the brazing materials comprises Si of 4.00 to 13.00 mass %.
    Type: Application
    Filed: October 25, 2019
    Publication date: December 23, 2021
    Applicant: UACJ Corporation
    Inventors: Tomoki Yamayoshi, Hidetoshi Kumagai, Hirokazu Tanaka