Patents by Inventor Tong Zhao

Tong Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10510364
    Abstract: Devices that include a near field transducer (NFT) including a crystalline plasmonic material having crystal grains and grain boundaries; and nanoparticles disposed in the crystal grains, on the grain boundaries, or some combination thereof, wherein the nanoparticles are oxides of, lanthanum (La), barium (Ba), strontium (Sr), erbium (Er), hafnium (Hf), germanium (Ge), or combinations thereof; nitrides of zirconium (Zr), niobium (Nb), or combinations thereof; or carbides of silicon (Si), aluminum (Al), boron (B), zirconium (Zr), tungsten (W), titanium (Ti), niobium (Nb), or combinations thereof.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 17, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Justin Brons, Steven C. Riemer, Michael C. Kautzky, Xiaoyue Huang, Sarbeswar Sahoo
  • Patent number: 10482914
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: November 19, 2019
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Patent number: 10431244
    Abstract: Devices that have an air bearing surface (ABS), the device includes a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein the disc includes a disc material that includes gold or an alloy thereof and the peg includes a peg material, wherein the disc material is different from the peg material and wherein the peg material has a real part of the permittivity that is not greater than that of gold.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: October 1, 2019
    Assignee: Seagate Technology LLC
    Inventors: Martin Blaber, Tong Zhao, Michael C. Kautzky, Justin Brons, John C. Duda, Yuhang Cheng, Michael A. Seigler
  • Patent number: 10399978
    Abstract: It relates to the imidazopyridine thioglycolic acid derivatives, the preparation, and use thereof. The invention contained imidazopyridine thioglycolic acid derivatives with the formula I or II or III. Also described here are preparation of imidazopyridine thioglycolic acid derivatives, pharmaceutical compositions comprising these compounds as therapy and prevention for gout.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: September 3, 2019
    Assignee: SHANDONG UNIVERSITY
    Inventors: Xinyong Liu, Qing Meng, Peng Zhan, Zengjun Fang, Tong Zhao, Zhuosen Sun, Xiukun Sun
  • Patent number: 10403310
    Abstract: An apparatus comprises a slider configured for heat-assisted magnetic recording. A near-field transducer comprising a peg is situated at or near an air bearing surface of the slider, and an optical waveguide of the slider is configured to couple light from a light source to the near-field transducer. The peg comprises a hyperbolic metamaterial, and the near-field transducer may further include an enlarged portion from which the peg extends, where the enlarged portion may also comprise a hyperbolic metamaterial.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: September 3, 2019
    Assignee: Seagate Technology LLC
    Inventors: Andres David Barbosa Neira, Roberto Fernandez Garcia, Michael James Hardy, Choon How Gan, Mark Anthony Gubbins, Florin Zavaliche, Tong Zhao, Martin Giles Blaber
  • Publication number: 20190225606
    Abstract: It relates to the imidazopyridine thioglycolic acid derivatives, the preparation, and use thereof. The invention contained imidazopyridine thioglycolic acid derivatives with the formula I or II or III. Also described here are preparation of imidazopyridine thioglycolic acid derivatives, pharmaceutical compositions comprising these compounds as therapy and prevention for gout.
    Type: Application
    Filed: September 2, 2016
    Publication date: July 25, 2019
    Applicant: Shandong University
    Inventors: Xinyong LIU, Qing MENG, Peng ZHAN, Zengjun FANG, Tong ZHAO, Zhuosen SUN, Xiukun SUN
  • Patent number: 10329700
    Abstract: A method for producing a fluffy temperature regulating warmth retention material and the fluffy temperature regulating warmth retention material produced therefrom are disclosed. The method comprises: selecting a low melting point fiber and an additional fiber; carding to form a single web; spray coating a phase change material along at least part of the length of a surface of the single web; lapping layer by layer of the single web; and performing a heat setting reinforcement to form the warmth retention material. According to the present invention, a fluffy temperature regulating warmth retention material comprising an appropriate ratio of a phase change material may be obtained and the material exhibits a satisfactory temperature regulating effect, and meanwhile, it can maintain, to the full extent, or is close to, the original filling power and soft hand feeling where no phase change material is incorporated.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: June 25, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Feng Xu, Guo Tong Zhao, Xiaoshuan Fu, Hong Bing Xiang, Yue Ge
  • Patent number: 10311906
    Abstract: Devices having an air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc having a front edge; a peg, the peg having a front surface at the air bearing surface of the apparatus, an opposing back surface, a top surface that extends from the front surface to the back surface, two side surfaces that expend from the front surface to the back surface and a bottom surface that extends from the front surface to the back surface; and a barrier layer, the barrier layer separating at least the back surface of the peg from the disc and the barrier layer having a thickness from 10 nm to 50 nm.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 4, 2019
    Assignee: Seagate Technology LLC
    Inventors: Martin Blaber, Jie Gong, Dimitar Dimitrov, Steven Riemer, Michael Kautzky, Tong Zhao, Yongjun Zhao
  • Publication number: 20190164570
    Abstract: Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 30, 2019
    Inventors: Sarbeswar Sahoo, Martin Blaber, Hui Brickner, Tong Zhao, Yuhang Cheng, John Duda, Tae-Woo Lee
  • Patent number: 10304482
    Abstract: Devices having an air bearing surface (ABS), the devices include a write pole; a near field transducer (NFT) including a peg and a disc, wherein the peg is at the ABS of the device; an overcoat, the overcoat including a low surface energy layer.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 28, 2019
    Assignee: Seagate Technology LLC
    Inventors: Yuhang Cheng, Michael Seigler, Scott Franzen, Tong Zhao, Xiaoyue Huang, Steven C. Riemer, Robert Anthony Fernandez, Douglas H. Cole
  • Publication number: 20190153590
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Patent number: 10229704
    Abstract: Devices having air bearing surfaces (ABS), the devices including a near field transducer (NFT) that includes a disc configured to convert photons incident thereon into plasmons; and a peg configured to couple plasmons coupled from the disc into an adjacent magnetic storage medium, wherein at least one of a portion of the peg, a portion of the disc, or a portion of both the peg and the disc include a multilayer structure including at least two layers including at least one layer of a first material and at least one layer of a second material, wherein the first material and the second material are not the same and wherein the first and the second materials independently include aluminum (Al), antimony (Sb), bismuth (Bi), boron (B), barium (Ba), calcium (Ca), cerium (Ce), chromium (Cr), cobalt (Co), copper (Cu), erbium (Er), gadolinium (Gd), gallium (Ga), germanium (Ge), gold (Au), hafnium (Hf), indium (In), iridium (Ir), iron (Fe), lanthanum (La), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), ni
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: March 12, 2019
    Assignee: Seagate Technology LLC
    Inventors: Martin Blaber, Tong Zhao, Justin Brons, Michael Kautzky
  • Patent number: 10217482
    Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: yttrium (Y), tin (Sn), iron (Fe), copper (Cu), carbon (C), holmium (Ho), gallium (Ga), silver (Ag), ytterbium (Yb), chromium (Cr), tantalum (Ta), iridium (Ir), zirconium (Zr), yttrium (Y), scandium (Sc), cobalt (Co), silicon (Si), nickel (Ni), molybdenum (Mo), niobium (Nb), palladium (Pd), titanium (Ti), rhenium (Re), osmium (Os), platinum (Pt), aluminum (Al), ruthenium (Ru), rhodium (Rh), vanadium (V), germanium (Ge), tin (Sn), magnesium (Mg), iron (Fe), copper (Cu), tungsten (W), hafnium (Hf), carbon (C), boron (B), holmium (Ho), antimony (Sb), gallium (Ga), manganese (Mn), silver (Ag), indium (In), bismuth (Bi), zinc (Zn), ytterbium (Yb), and combinations thereof.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 26, 2019
    Assignee: Seagate Technology LLC
    Inventors: Vijay Karthik Sankar, Tong Zhao, Yongjun Zhao, Michael C. Kautzky, Hui Brickner, Sarbeswar Sahoo
  • Publication number: 20190051319
    Abstract: Devices that include a near field transducer (NFT), the NFT having at least one external surface; and at least one multilayer adhesion layer positioned on at least a portion of the at least one external surface, the multilayer adhesion layer including a first layer and a second layer, with the second layer being in contact with the portion of the at least one external surface of the NFT, the first layer including: yttrium (Y), scandium (Sc), zirconium (Zr), hafnium (Hf), silicon (Si), boron (B), tantalum (Ta), barium (Ba), aluminum (Al), titanium (Ti), niobium (Nb), calcium (Ca), beryllium (Be), strontium (Sr), magnesium (Mg), lithium (Li), or combinations thereof; and the second layer including: lanthanum (La), boron (B), lutetium (Lu), aluminum (Al), deuterium (D), cerium (Ce), uranium (U), praseodymium (Pr), yttrium (Y), silicon (Si), iridium (Ir), carbon (C), thorium (Th), scandium (Sc), titanium (Ti), vanadium (V), phosphorus (P), barium (Ba), europium (Eu), or combinations thereof.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Justin Brons, Tong Zhao, Yuhang Cheng, Dimitar V. Dimitrov
  • Patent number: 10192574
    Abstract: Devices having an air bearing surface (ABS), the devices including a write pole; a near field transducer (NFT) that includes a peg and a disc, wherein the peg is at the ABS of the device; a heat sink positioned adjacent the disc of the NFT; a dielectric gap positioned adjacent the peg of the NFT at the ABS of the device; and a conformal diffusion barrier layer positioned between the write pole and the dielectric gap, the disc, and the heat sink, wherein the conformal diffusion barrier layer forms at least one angle that is not greater than 135°.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: January 29, 2019
    Assignee: Seagate Technology LLC
    Inventors: Sarbeswar Sahoo, Martin Blaber, Hui Brickner, Tong Zhao, Yuhang Cheng, John Duda, Tae-Woo Lee
  • Patent number: 10190210
    Abstract: Devices having an air bearing surface (ABS), the device including a near field transducer, the near field transducer having a peg and a disc, the peg having a region adjacent the ABS, the peg including a plasmonic material selected from gold (Au), silver (Ag), copper (Cu), ruthenium (Ru), rhodium (Rh), aluminum (Al), or combinations thereof; and at least one other secondary atom selected from germanium (Ge), tellurium (Te), aluminum (Al), antimony (Sb), tin (Sn), mercury (Hg), indium (In), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), silver (Ag), chromium (Cr), cobalt (Co), and combinations thereof, wherein a concentration of the secondary atom is higher at the region of the peg adjacent the ABS than a concentration of the secondary atom throughout the bulk of the peg. Methods of forming NFTs are also disclosed.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 29, 2019
    Assignee: Seagate Technology LLC
    Inventors: Tong Zhao, Michael C. Kautzky, Sarbeswar Sahoo, Justin Brons, Jie Gong, Yuhang Cheng
  • Publication number: 20180371654
    Abstract: The present invention provides a thermal insulation filling material and preparation method thereof and a thermal insulation product, and pertains to the field of thermal insulation filling materials. The thermal insulation filling material of the present invention includes: a bulk fibre; and a spherical fibre assembly, where a water-repellent layer is formed on a surface of the bulk fibre and of the spherical fibre assembly, and a weight ratio of the bulk fibre to the spherical fibre assembly is between about 30:70 and about 70:30. The thermal insulation filling material is good in wash durability, and has comprehensive performance such as better blowable processability, quick-drying property, compression-resilience property, and thermal insulation property, etc.
    Type: Application
    Filed: December 22, 2016
    Publication date: December 27, 2018
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Weili Hu, Xiaoshuan Fu, Guo Tong Zhao
  • Publication number: 20180366153
    Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof; erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof; and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.
    Type: Application
    Filed: April 13, 2018
    Publication date: December 20, 2018
    Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
  • Publication number: 20180356275
    Abstract: The present disclosure relates to a calibration device and a sensitivity determining device for a virtual flow meter, and corresponding methods. The present disclosure relates to a calibration device for calibrating a virtual flow meter of a production system, and the production system includes components for transferring fluid, where the virtual flow meter is configured to estimate a flow rate of the fluid based on property values of the components and values of variable parameters of the components, and the calibration device includes a sensitivity determining module configured to calculate a first sensitivity, where the first sensitivity is used to indicate a degree of change of the values of the variable parameters relative to disturbance of the property values; and a calibration module configured to calibrate the virtual flow meter according to the first sensitivity. The present disclosure further relates to corresponding methods.
    Type: Application
    Filed: December 22, 2016
    Publication date: December 13, 2018
    Inventors: Tong ZHAO, Yu RU
  • Patent number: 10137732
    Abstract: The present disclosure relates to a universal wheel assembly and a suitcase including the universal wheel assembly. The universal wheel assembly includes: a base structure including an upper base and a lower base which form a cavity therebetween; and a wheel bail locked in the cavity in a manner such that the wheel ball is capable of rolling in all directions, wherein a bottom of the lower base is provided with an opening enabling a part of the wheel bail to protrude out of a lower end face of the lower base to form an exposed rolling spherical surface, and an inner diameter of the opening is smaller than a diameter of the wheel ball.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: November 27, 2018
    Assignee: Xiaomi Inc.
    Inventors: Tong Zhao, Qun Tao, Huayijun Liu