Patents by Inventor Tony L. Campbell

Tony L. Campbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140031984
    Abstract: A system including a mobile telepresence robot, a telepresence computing device in wireless communication with the robot, and a host computing device in wireless communication with the robot and the telepresence computing device. The host computing device relays User Datagram Protocol traffic between the robot and the telepresence computing device through a firewall.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: iRobot Corporation
    Inventors: Matthew Cross, Tony L. Campbell
  • Patent number: 8634960
    Abstract: A robot lawnmower includes a body and a drive system carried by the body and configured to maneuver the robot across a lawn. The robot also includes a grass cutter and a swath edge detector, both carried by the body. The swath edge detector is configured to detect a swath edge between cut and uncut grass while the drive system maneuvers the robot across the lawn while following a detected swath edge. The swath edge detector includes a calibrator that monitors uncut grass for calibration of the swath edge detector. In some examples, the calibrator comprises a second swath edge detector.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: January 21, 2014
    Assignee: iRobot Corporation
    Inventors: Paul E. Sandin, Joseph L. Jones, Daniel N. Ozick, David A. Cohen, David M. Lewis, Jr., Clara Vu, Zivthan A. Dubrovsky, Joshua B. Preneta, Jeffrey W. Mammen, Duane L. Gilbert, Jr., Tony L. Campbell, John Bergman
  • Patent number: 8600553
    Abstract: An autonomous coverage robot includes a drive system, a bump sensor, and a proximity sensor. The drive system is configured to maneuver the robot according to a heading (turn) setting and a speed setting. The bump sensor is responsive to a collision of the robot with an obstacle in a forward direction. A method of navigating an autonomous coverage robot with respect to an object on a floor includes the robot autonomously traversing the floor in a cleaning mode at a full cleaning speed. Upon sensing a proximity of the object forward of the robot, the robot reduces the cleaning speed to a reduced cleaning speed while continuing towards the object until the robot detects a contact with the object. Upon sensing contact with the object, the robot turns with respect to the object and cleans next to the object, optionally substantially at the reduced cleaning speed.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: December 3, 2013
    Assignee: iRobot Corporation
    Inventors: Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett
  • Patent number: 8583282
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: November 12, 2013
    Assignee: iRobot Corporation
    Inventors: Colin Angle, Clara Vu, Matthew Cross, Tony L. Campbell
  • Publication number: 20130253701
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 26, 2013
    Applicant: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, JR., Daniel N. Ozick
  • Patent number: 8374721
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: February 12, 2013
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Patent number: 8359703
    Abstract: An autonomous coverage robot includes a body having at least one outer wall, a drive system disposed on the body and configured to maneuver the robot over a work surface, and a cleaning assembly carried by the body. The cleaning assembly includes first and second cleaning rollers rotatably coupled to the body, a suction assembly having a channel disposed adjacent at least one of the cleaning rollers, and a container in fluid communication with the channel. The container is configured to collect debris drawn into the channel. The suction assembly is configured to draw debris removed from the work surface by at least one of the cleaning rollers into the channel, and the container has a wall common with the at least one outer wall of the body.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: January 29, 2013
    Assignee: iRobot Corporation
    Inventors: Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett
  • Publication number: 20120303160
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Application
    Filed: June 4, 2012
    Publication date: November 29, 2012
    Applicant: IROBOT CORPORATION
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Patent number: 8271129
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: September 18, 2012
    Assignee: iRobot Corporation
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, Jr., Daniel N. Ozick
  • Patent number: 8195333
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: June 5, 2012
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Publication number: 20110172822
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Application
    Filed: July 23, 2010
    Publication date: July 14, 2011
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Patent number: 7957837
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: June 7, 2011
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Publication number: 20110077802
    Abstract: A power-saving robot system includes at least one peripheral device and a mobile robot. The peripheral device includes a controller having an active mode and a hibernation mode, and a wireless communication component capable of activation in the hibernation mode. A controller of the robot has an activating routine that communicates with and temporarily activates the peripheral device, via wireless communication, from the hibernation mode. In another aspect, a robot system includes a network data bridge and a mobile robot. The network data bridge includes a broadband network interface, a wireless command interface, and a data bridge component. The data bridge component extracts serial commands received via the broadband network interface from an internet protocol, applies a command protocol thereto, and broadcasts the serial commands via the wireless interface. The mobile robot includes a wireless command communication component that receives the serial commands transmitted from the network data bridge.
    Type: Application
    Filed: December 3, 2010
    Publication date: March 31, 2011
    Inventors: Michael J. Halloran, Jeffrey W. Mammen, Tony L. Campbell, Jason S. Walker, Paul E. Sandin, John N. Billington, JR., Daniel N. Ozick
  • Patent number: 7720572
    Abstract: A robot system includes a base station and a robot. The base station includes a wireless transceiver configured to communicate TCP/IP transmissions over a local wireless protocol, a wired Ethernet connector for communicating TCP/IP transmissions over a local wired Ethernet accessing the Internet, and an access point circuit for transferring TCP/IP transmissions between the local wired Ethernet and local wireless protocol. The access point circuit is limited to a predetermined IP address locked to the robot, a predetermined shell level encryption locked to the robot, and predetermined ports to the Internet open only to the robot. The robot includes a wireless transceiver configured to communicate TCP/IP transmissions over a local wireless protocol and a client circuit for transferring TCP/IP transmissions over the local wireless protocol.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: May 18, 2010
    Assignee: iRobot Corporation
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Publication number: 20100037418
    Abstract: An autonomous coverage robot includes a body, a drive system disposed on the body, and a cleaning assembly disposed on the body and configured to engage a floor surface while the robot is maneuvered across the floor surface. The cleaning assembly includes a driven cleaning roller, a cleaning bin disposed on the body for receiving debris agitated by the cleaning roller, and an air mover. The cleaning bin includes a cleaning bin body having a cleaning bin entrance disposed adjacent to the cleaning roller and a roller scraper disposed on the cleaning bin body for engaging the cleaning roller. The cleaning bin body has a holding portion in pneumatic communication with the cleaning bin entrance, and the air mover is operable to move air into the cleaning bin entrance.
    Type: Application
    Filed: August 13, 2009
    Publication date: February 18, 2010
    Applicant: iRobot Corporation
    Inventors: Patrick Alan Hussey, Robert Paul Roy, Rogelio Manfred Neumann, Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett
  • Publication number: 20090254218
    Abstract: A robot lawmnower includes a body, a drive system carried by the body, at least one caster wheel supporting the body, a grass cutter carried by the body, a controller in communication with the drive system, and a bump sensor in communication with the controller. The controller is configured to maneuver the robot to turn in place and to redirect the robot in response to the bump sensor sensing contact with an obstacle. The drive system is configured to maneuver the robot across a lawn and includes differentially driven right and left drive wheels positioned rearward of a transverse center axis defined by the body. The at least one caster wheel is positioned substantially forward of the right and left drive wheels, and the grass cutter is positioned at least partially forward of the right and left drive wheels and at least partially behind the at least one caster wheel.
    Type: Application
    Filed: June 19, 2009
    Publication date: October 8, 2009
    Inventors: PAUL E. SANDIN, JOSEPH L. JONES, DANIEL N. OZICK, DAVID A. COHEN, DAVID M. LEWIS, JR., CLARA VU, ZIVTHAN A. DUBROVSKY, JOSHUA B. PRENETA, JEFFREY W. MAMMEN, DUANE L. GILBERT, JR., TONY L. CAMPBELL, JOHN BERGMAN, MARK J. CHAIAPPETTA
  • Publication number: 20090177323
    Abstract: A mobile robot guest for interacting with a human resident performs a room-traversing search procedure prior to interacting with the resident, and may verbally query whether the resident being sought is present. Upon finding the resident, the mobile robot may facilitate a teleconferencing session with a remote third party, or interact with the resident in a number of ways. For example, the robot may carry on a dialogue with the resident, reinforce compliance with medication or other schedules, etc. In addition, the robot incorporates safety features for preventing collisions with the resident; and the robot may audibly announce and/or visibly indicate its presence in order to avoid becoming a dangerous obstacle. Furthermore, the mobile robot behaves in accordance with an integral privacy policy, such that any sensor recording or transmission must be approved by the resident.
    Type: Application
    Filed: August 27, 2008
    Publication date: July 9, 2009
    Inventors: Andrew Ziegler, Andrew Jones, Clara Vu, Matthew Cross, Ken Sinclair, Tony L. Campbell
  • Publication number: 20090007366
    Abstract: An autonomous coverage robot includes a body having at least one outer wall, a drive system disposed on the body and configured to maneuver the robot over a work surface, and a cleaning assembly carried by the body. The cleaning assembly includes first and second cleaning rollers rotatably coupled to the body, a suction assembly having a channel disposed adjacent at least one of the cleaning rollers, and a container in fluid communication with the channel. The container is configured to collect debris drawn into the channel. The suction assembly is configured to draw debris removed from the work surface by at least one of the cleaning rollers into the channel, and the container has a wall common with the at least one outer wall of the body.
    Type: Application
    Filed: September 17, 2008
    Publication date: January 8, 2009
    Applicant: IROBOT CORPORATION
    Inventors: Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett
  • Patent number: 7441298
    Abstract: An autonomous coverage robot includes a chassis, a drive system to maneuver the robot, an edge cleaning head carried, and a controller. The controller is configured to monitor motor current associated with the edge cleaning head and to reverse bias the edge cleaning head motor in response to an elevated motor current, while continuing to maneuver the robot across the floor. In another aspect, an autonomous coverage robot includes a drive system, a bump sensor, and a proximity sensor. The drive system is configured to reduce a speed setting in response to a signal from the proximity sensor indicating detection of a potential obstacle in a forward direction, while continuing to advance the robot according to a heading setting. Furthermore, the drive system is configured to alter the heading setting in response to a signal received from the bump sensor indicating contact with an obstacle.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: October 28, 2008
    Assignee: iRobot Corporation
    Inventors: Selma Svendsen, Daniel N. Ozick, Christopher M. Casey, Deepak Ramesh Kapoor, Tony L. Campbell, Chikyung Won, Christopher John Morse, Scott Thomas Burnett