Patents by Inventor Tony T. Phan

Tony T. Phan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7902055
    Abstract: An embodiment of the invention is a Schottky diode 22 having a semiconductor substrate 3, a first metal 24, a barrier layer 26, and second metal 28. Another embodiment of the invention is a method of manufacturing a Schottky diode 22 that includes providing a semiconductor substrate 3, forming a barrier layer 26 over the semiconductor substrate 3, forming a first metal layer 23 over the semiconductor substrate 3, annealing the semiconductor substrate 3 to form areas 24 of reacted first metal and areas 23 of un-reacted first metal, and removing selected areas 23 of the un-reacted first metal. The method further includes forming a second metal layer 30 over the semiconductor substrate 3 and annealing the semiconductor substrate 3 to form areas 28 of reacted second metal and areas 30 of un-reacted second metal.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: March 8, 2011
    Assignee: Texas Instruments Incoprorated
    Inventors: Richard B. Irwin, Tony T. Phan, Hong-Ryong Kim, Ming-Yeh Chuang, Jennifer S. Dumin, Patrick J. Jones, Fredric D. Bailey
  • Patent number: 7593923
    Abstract: A set of mechanisms handles communication with a Knowledge Store and its K Engine(s). The Knowledge Store (Kstore) does not need indexes or tables to support it but instead is formed by the construction of interlocking trees of pointers in nodes of the interlocking trees. The K Engine builds and is used to query a KStore by using threads that use software objects together with a K Engine to learn particlized events, thus building the KStore, and these or other software objects can be used to make queries and get answers from the KStore, usually with the help of a K Engine. Under some circumstances, information can be obtained directly from the KStore, but is generally only available through the actions of the K Engine. The mechanisms provide communications pathways for users and applications software to build and/or query the KStore. Both these processes can proceed simultaneously, and in multiple instances. There can be a plurality of engines operating on a KStore essentially simultaneously.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: September 22, 2009
    Assignee: Unisys Corporation
    Inventors: Jane Campbell Mazzagatti, Jane Van Keuren Claar, Tony T. Phan
  • Patent number: 7415378
    Abstract: The present invention provides a method for analyzing critical defects in analog integrated circuits. The method for analyzing critical defects, among other possible steps, may include fault testing a power field effect transistor (120) portion of an analog integrated circuit (115) to obtain electrical failure data. The method may further include performing an in-line optical inspection of the analog integrated circuit (115) to obtain physical defect data, and correlating the electrical failure data and physical defect data to analyze critical defects.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: August 19, 2008
    Assignee: Texas Instruments incorporated
    Inventors: Martin B. Mollat, Milind V. Khandekar, Tony T. Phan, Kyle M. Flessner
  • Publication number: 20080132066
    Abstract: The present invention provides an integrated circuit and a method of manufacture therefore. The integrated circuit (100, 1000), in one embodiment without limitation, includes a dielectric layer (120, 1020) located over a wafer substrate (110, 1010), and a semiconductor substrate (130, 1030) located over the dielectric layer (120, 1020), the semiconductor substrate (130, 1030) having one or more transistor devices (140, 1040) located therein or thereon. The integrated circuit (100, 1000) may further include an interconnect (170, 1053) extending entirely through the semiconductor substrate (130, 1030) and the dielectric layer (120, 1020), thereby electrically contacting the wafer substrate (110, 1010).
    Type: Application
    Filed: January 18, 2008
    Publication date: June 5, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Tony T. Phan, William C. Loftin, John Lin, Philip L. Hower
  • Patent number: 7345343
    Abstract: The present invention provides an integrated circuit and a method of manufacture therefore. The integrated circuit (100, 1000), in one embodiment without limitation, includes a dielectric layer (120, 1020) located over a wafer substrate (110, 1010), and a semiconductor substrate (130, 1030) located over the dielectric layer (120, 1020), the semiconductor substrate (130, 1030) having one or more transistor devices (140, 1040) located therein or thereon. The integrated circuit (100, 1000) may further include an interconnect (170, 1053) extending entirely through the semiconductor substrate (130, 1030) and the dielectric layer (120, 1020), thereby electrically contacting the wafer substrate (110, 1010).
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: March 18, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Tony T. Phan, William C. Loftin, John Lin, Philip L. Hower
  • Patent number: 7262109
    Abstract: The present invention provides an integrated circuit and a method of manufacture therefor. The integrated circuit (100), in one embodiment without limitation, includes a dielectric layer (120) located over a wafer substrate (110), and a semiconductor substrate (130) located over the dielectric layer (120), the semiconductor substrate (130) having one or more transistor devices (160) located therein or thereon. The integrated circuit (100) may further include an interconnect (180) extending entirely through the semiconductor substrate (130) and the dielectric layer (120), thereby electrically contacting the wafer substrate (110), and one or more isolation structures (150) extending entirely through the semiconductor substrate (130) to the dielectric layer (120).
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: August 28, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: John Lin, Tony T. Phan, Philip L. Hower, William C. Loftin, Martin B. Mollat
  • Patent number: 7118958
    Abstract: The present invention provides a method for manufacturing a metal-insulator-metal (MIM) capacitor, a method for manufacturing an integrated circuit having a metal-insulator-metal (MIM) capacitor, and an integrated circuit having a metal-insulator-metal (MIM) capacitor. The method for manufacturing the metal-insulator-metal (MIM) capacitor, among other steps and without limitation, includes providing a material layer (185) over a substrate (110), and forming a refractory metal layer (210) having a thickness (t1) over the substrate (110), at least a portion of the refractory metal layer (210) extending over the material layer (185). The method further includes reducing the thickness (t2) of the portion of the refractory metal layer (210) extending over the material layer (185), thereby forming a thinned refractory metal layer (310), and reacting the thinned refractory metal layer (310) with at least a portion of the material layer (185) to form an electrode (440) for use in a capacitor.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: October 10, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Tony T. Phan, Martin B. Mollat
  • Patent number: 6972470
    Abstract: An embodiment of the invention is a Schottky diode 22 having a semiconductor substrate 3, a first metal 24, a barrier layer 26, and second metal 28. Another embodiment of the invention is a method of manufacturing a Schottky diode 22 that includes providing a semiconductor substrate 3, forming a barrier layer 26 over the semiconductor substrate 3, forming a first metal layer 23 over the semiconductor substrate 3, annealing the semiconductor substrate 3 to form areas 24 of reacted first metal and areas 23 of un-reacted first metal, and removing selected areas 23 of the un-reacted first metal. The method further includes forming a second metal layer 30 over the semiconductor substrate 3 and annealing the semiconductor substrate 3 to form areas 28 of reacted second metal and areas 30 of un-reacted second metal.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: December 6, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Richard B. Irwin, Tony T. Phan, Hong-Ryong Kim, Ming-Yeh Chuang, Jennifer S. Dumin, Patrick J. Jones, Fredric D. Bailey
  • Patent number: 6689668
    Abstract: Various methods are provided of forming capacitor electrodes for integrated circuit memory cells in which out-diffusion of dopant from doped silicon layers is controlled by deposition of barrier layers, such as layers of undoped silicon and/or oxide. In one aspect, a method of forming hemispherical grain silicon on a substrate is provided that includes forming a first doped silicon layer on the substrate and a first barrier layer on the doped silicon layer. A hemispherical grain polysilicon source layer is formed on the first barrier layer and a hemispherical grain silicon layer on the hemispherical grain polysilicon source layer. By controlling out-diffusion of dopant, HSG grain size, density and uniformity, as well as DRAM memory cell capacitance, may be enhanced, while at the same time maintaining reactor throughput.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: February 10, 2004
    Assignees: Samsung Austin Semiconductor, L.P., Samsung Electronics Co., Ltd.
    Inventors: Mohamed el-Hamdi, Tony T. Phan, Luther Hendrix, Bradley T. Moore
  • Patent number: 6190518
    Abstract: An improved sputter etching technique is provided for substantially preventing or reducing plasma etch damages associated with sputter etching. The plasma etch technique can utilize a semiconductor wafer having at least one diode formed within an inactive region of the wafer near the outer periphery of the wafer. The diode is capable of preventing charge transfer or arcing between the grounded anode and the p-channel gate region. By placing a diode within the inactive region of the wafer, problems such as gate oxide breakdown, threshold voltage skew, flat-band voltage skew, etc. can be minimized or substantially reduced. Alternatively, a standard wafer not having an implanted or diffused diode can be utilized to obtain similar beneficial results provided the sputter etch anode is retrofitted to include a diode placed between the anode and the ground terminal. Similar to the diode placed on the wafer, the retrofitted anode is used to provide a depletion region for preventing charge transfer therethrough.
    Type: Grant
    Filed: July 20, 1993
    Date of Patent: February 20, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Tony T. Phan, Tom J. Goodwin, John K. Lowell
  • Patent number: 5434423
    Abstract: An improved ion implantation system and method for placing dopant upon and within a semiconductor surface. The ion implantation system is capable of higher beam current by reducing dopant concentration across selected surface areas. Offsetting electrons are also diffused to maintain a lower net ion level at the selected areas. Amount of beam current can be increased according to user requirements to enhance throughput of the implantation process. Diffusion of ions and electrons is achieved by reconfiguring or redesigning an acceleration tube placed subsequent to the ion source. The acceleration tube comprises a plurality of electrodes spaced adjacent each other and extending as a pair of rows. Each row extends from a location proximal to the ion source to a location distal to the ion source. Sourcing a power supply upon a more distally located electrode allows the ions and/or electrons to diffuse outward from their acceleration path at a larger spot size upon the semiconductor surface.
    Type: Grant
    Filed: June 3, 1994
    Date of Patent: July 18, 1995
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Tony T. Phan