Patents by Inventor Tooru Inaguma

Tooru Inaguma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10610829
    Abstract: Adhesion of a catalyst layer and an oxide film in a honeycomb substrate for catalyst support is improved. A honeycomb substrate for catalyst support used in purification of exhaust gas includes a honeycomb body and an oxide film that is formed on the surface of the honeycomb body and that has ?-alumina as a main component. The oxide film includes multiple oxide projections that are formed to be dispersed on the film surface and that include a contracted shape in which the width becomes narrower near the honeycomb body, and the density of the projection formations on the film surface is 0.20 (pieces/?m2)-3.00 (pieces/?m2).
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: April 7, 2020
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL, CO., LTD.
    Inventors: Shinji Kawasoe, Tooru Inaguma, Takuzo Kako
  • Publication number: 20200023313
    Abstract: Adhesion of a catalyst layer and an oxide film in a honeycomb substrate for catalyst support is improved. A honeycomb substrate for catalyst support used in purification of exhaust gas includes a honeycomb body and an oxide film that is formed on the surface of the honeycomb body and that has ?-alumina as a main component. The oxide film includes multiple oxide projections that are formed to be dispersed on the film surface and that include a contracted shape in which the width becomes narrower near the honeycomb body, and the density of the projection formations on the film surface is 0.20 (pieces/m2)-3.00 (pieces/m2).
    Type: Application
    Filed: February 26, 2018
    Publication date: January 23, 2020
    Inventors: Shinji KAWASOE, Tooru INAGUMA, Takuzo KAKO
  • Patent number: 10458305
    Abstract: A base for supporting a catalyst for exhaust gas purification, the base including a honeycomb structure obtained by superposing a metallic flat foil and a metallic wavy foil, characterized in that the wavy foil has offset portions where any adjoining two of the wave phases arranged in the axial direction of the honeycomb structure are offset from each other. The base is further characterized in that an oxide coating film has been formed in a given range of these offset portions which includes exposed edge surfaces that are exposed on the gas-inlet side, that the oxide coating film includes 30-99.9 mass % first alumina, with the remainder comprising at least one of second aluminas, Fe oxides, and Cr oxides, that the first alumina comprises ?-alumina, that the second aluminas comprise one or more of ?-, ?-, ?-, ?-, ?-, and ?-aluminas.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: October 29, 2019
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Tooru Inaguma, Shinji Kawasoe, Yasuhiro Tsumura, Shogo Konya, Masayuki Kasuya, Masafumi Omizu
  • Patent number: 10378412
    Abstract: A metal substrate for catalytic converter for purifying an exhaust gas includes a honeycomb core with metal flat foil and corrugated foil stacked in layers, and an oxide film having a thickness of 0.1 ?m or more and 10 ?m or less is formed in a predetermined range including an exposed end surface exposed toward the gas inlet side. The oxide film contains at least a first alumina including ?-alumina and a Fe oxide. The ?-alumina contains ?-alumina with solid-solved Fe and ?-alumina with no solid-solved Fe. In the oxide film, the content of the first alumina is 30% by mass or more and 99.5% by mass or less, the content of the Fe oxide is 0.5% by mass or more and 40% by mass or less, and the content of Fe is more than 7% by mass and 35% by mass or less.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: August 13, 2019
    Assignee: NIPPON STEEL CHEMICAL & MATERIAL CO., LTD.
    Inventors: Tooru Inaguma, Shinji Kawasoe, Yasuhiro Tsumura, Shogo Konya, Masayuki Kasuya, Takuzo Kako, Masafumi Omizu
  • Patent number: 10232362
    Abstract: A honeycomb core for carrying a catalyst includes a flat metal foil and a corrugated metal foil, which are layered. The corrugated foil is configured by repeating a concavo-convex shaped part including a first top surface that is in contact with one of the flat foils, a second top surface that is in contact with another flat foil and is disposed at a position where the second top surface avoids the first top surface, and an inclined leg surface that has one end connected to the first top surface through a first bent part and another end connected to the second top surface through a second bent part, and extends in a direction inclined with respect to the first top surface and the second top surface, and has an offset part having different wave phases between front and rear in an axial direction of the honeycomb core.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: March 19, 2019
    Assignee: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Tooru Inaguma, Yasuhiro Tsumura, Shogo Konya, Masayuki Kasuya, Masafumi Omizu
  • Publication number: 20190078489
    Abstract: A metal substrate for catalytic converter for purifying an exhaust gas includes a honeycomb core with metal flat foil and corrugated foil stacked in layers, and an oxide film having a thickness of 0.1 ?m or more and 10 ?m or less is formed in a predetermined range including an exposed end surface exposed toward the gas inlet side. The oxide film contains at least a first alumina including ?-alumina and a Fe oxide. The ?-alumina contains ?-alumina with solid-solved Fe and ?-alumina with no solid-solved Fe. In the oxide film, the content of the first alumina is 30% by mass or more and 99.5% by mass or less, the content of the Fe oxide is 0.5% by mass or more and 40% by mass or less, and the content of Fe is more than 7% by mass and 35% by mass or less.
    Type: Application
    Filed: October 11, 2017
    Publication date: March 14, 2019
    Inventors: Tooru INAGUMA, Shinji KAWASOE, Yasuhiro TSUMURA, Shogo KONYA, Masayuki KASUYA, Takuzo KAKO, Masafumi OMIZU
  • Publication number: 20180258816
    Abstract: A base for supporting a catalyst for exhaust gas purification, the base including a honeycomb structure obtained by superposing a metallic flat foil and a metallic wavy foil, characterized in that the wavy foil has offset portions where any adjoining two of the wave phases arranged in the axial direction of the honeycomb structure are offset from each other. The base is further characterized in that an oxide coating film has been formed in a given range of these offset portions which includes exposed edge surfaces that are exposed on the gas-inlet side, that the oxide coating film includes 30-99.9 mass % first alumina, with the remainder comprising at least one of second aluminas, Fe oxides, and Cr oxides, that the first alumina comprises ?-alumina, that the second aluminas comprise one or more of ?-, ?-, ?-, ?-, ?-, and ?-aluminas.
    Type: Application
    Filed: October 4, 2016
    Publication date: September 13, 2018
    Inventors: Tooru INAGUMA, Shinji KAWASOE, Yasuhiro TSUMURA, Shogo KONYA, Masayuki KASUYA, Masafumi OMIZU
  • Patent number: 10072549
    Abstract: A metal substrate for catalytic converter is characterized by: a flat foil and a corrugated metal foil arranged on a gas inlet side end section being joined to each other; the flat foil and the corrugated metal foil arranged in an outer circumferential joining section being joined to each other, said outer circumferential joining section being connected to an end section of the gas inlet side end section in the axial direction; an outer jacket and the honeycomb core being joined by interposing a bonding layer in the gas outlet side end section area P fulfilling formula (A), when P is the length of the bonding layer in the axial direction; a corrugated metal foil having an impact mitigating section; the impact mitigating section being formed in an area corresponding to at least the gas inlet side end section and the outer circumferential joining section.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: September 11, 2018
    Assignee: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Tooru Inaguma, Shogo Konya, Yasuhiro Tsumura, Toshio Iwasaki
  • Publication number: 20180243734
    Abstract: A honeycomb core for carrying a catalyst includes a flat metal foil and a corrugated metal foil, which are layered. The corrugated foil is configured by repeating a concavo-convex shaped part including a first top surface that is in contact with one of the flat foils, a second top surface that is in contact with another flat foil and is disposed at a position where the second top surface avoids the first top surface, and an inclined leg surface that has one end connected to the first top surface through a first bent part and another end connected to the second top surface through a second bent part, and extends in a direction inclined with respect to the first top surface and the second top surface, and has an offset part having different wave phases between front and rear in an axial direction of the honeycomb core.
    Type: Application
    Filed: December 27, 2016
    Publication date: August 30, 2018
    Applicant: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Tooru INAGUMA, Yasuhiro TSUMURA, Shogo KONYA, Masayuki KASUYA, Masafumi OMIZU
  • Patent number: 9856549
    Abstract: A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an ?-? transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to ?-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001}<470>, {116}<6 12 1>, and {223}<692> directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z=(A+0.97B)/0.98C is satisfied.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: January 2, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru Inaguma, Miho Tomita, Hiroaki Sakamoto, Youji Mizuhara
  • Patent number: 9679687
    Abstract: On at least one surface of a base metal plate (1) of an ?-? transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: June 13, 2017
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tooru Inaguma, Miho Tomita, Youji Mizuhara, Hiroaki Sakamoto
  • Publication number: 20170002711
    Abstract: A metal substrate for catalytic converter is characterized by: a flat foil and a corrugated metal foil arranged on a gas inlet side end section being joined to each other; the flat foil and the corrugated metal foil arranged in an outer circumferential joining section being joined to each other, said outer circumferential joining section being connected to an end section of the gas inlet side end section in the axial direction; an outer jacket and the honeycomb core being joined by interposing a bonding layer in the gas outlet side end section area P fulfilling formula (A), when P is the length of the bonding layer in the axial direction; a corrugated metal foil having an impact mitigating section; the impact mitigating section being formed in an area corresponding to at least the gas inlet side end section and the outer circumferential joining section.
    Type: Application
    Filed: December 24, 2014
    Publication date: January 5, 2017
    Applicant: NIPPON STEEL & SUMKIN MATERIALS CO., LTD.
    Inventors: Tooru INAGUMA, Shogo KONYA, Yasuhiro TSUMURA, Toshio IWASAKI
  • Patent number: 9267194
    Abstract: A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an ?-? transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to ?-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001}<470>, {116}<6 12 1>, and {223}<692> directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z =(A+0.97B)/0.98C is satisfied.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: February 23, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru Inaguma, Miho Tomita, Hiroaki Sakamoto, Youji Mizuhara
  • Publication number: 20150197836
    Abstract: A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an ?-? transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to ?-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001}<470>, {116}<6 12 1>, and {223}<692> directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z=(A+0.97B)/0.98C is satisfied.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru INAGUMA, Miho TOMITA, Hiroaki SAKAMOTO, Youji MIZUHARA
  • Publication number: 20150197835
    Abstract: A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an ?-? transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to ?-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001}<470>, {116}<6 12 1>, and {223}<692> directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z=(A+0.97B)/0.98C is satisfied.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru INAGUMA, Miho TOMITA, Hiroaki SAKAMOTO, Youji MIZUHARA
  • Publication number: 20150041023
    Abstract: On at least one surface of a base metal plate (1) of an ?-? transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru Inaguma, Miho Tomita, Youji Mizuhara, Hiroaki Sakamoto
  • Patent number: 8911565
    Abstract: On at least one surface of a base metal plate (1) of an ?-? transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: December 16, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tooru Inaguma, Miho Tomita, Youji Mizuhara, Hiroaki Sakamoto
  • Publication number: 20140069555
    Abstract: A cast slab containing C: less than 0.02 mass % and made of an Fe-based metal of an ?-? transforming component is subjected to hot rolling at a temperature of an A3 point or higher and is subjected to ?-region rolling at a temperature of 300° C. or higher and lower than the A3 point, and thereby a base metal sheet having a {100} texture in a surface layer portion is fabricated. Then, by performing a heat treatment under predetermined conditions, an Fe-based metal sheet is obtained in which a Z value is not less than 2.0 nor more than 200 when intensity ratios of respective {001}<470>, {116}<6 12 1>, and {223}<692> directions in a sheet plane by X-ray diffraction are set to A, B, and C respectively and Z=(A+0.97B)/0.98C is satisfied.
    Type: Application
    Filed: April 27, 2012
    Publication date: March 13, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tooru Inaguma, Miho Tomita, Hiroaki Sakamoto, Youji Mizuhara
  • Publication number: 20120211129
    Abstract: On at least one surface of a base metal plate (1) of an ?-? transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
    Type: Application
    Filed: October 27, 2010
    Publication date: August 23, 2012
    Inventors: Tooru Inaguma, Miho Tomita, Youji Mizuhara, Hiroaki Sakamoto
  • Publication number: 20100143743
    Abstract: A stainless steel substrate with one or more conductive metal layers, a method for manufacturing the same, and a hard disk drive suspension material using the same that are excellent in etching accuracy and does not involve the use of any substances casing environmental burdens, while ensuring stable adhesion between the conductive metal layers on the stainless steel substrate and the polyimide-based resin layer. The conductive metal layers are formed to have a total thickness ranging from 0.1 to 10 ?m, a centerline average surface roughness Ra from 0.05 to 1 ?m, and a ten-point average surface roughness Rz from 1 to 5 ?m, respectively.
    Type: Application
    Filed: January 26, 2007
    Publication date: June 10, 2010
    Applicant: NIPPON STEEL MATERIALS CO., LTD.
    Inventors: Yoshito Yamasaki, Jun Nakatsuka, Shuji Nagasaki, Tooru Inaguma, Yuji Kubo, Tsutomu Sugiura