Patents by Inventor Torsten J. Solf

Torsten J. Solf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9423479
    Abstract: A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 23, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan A. Overweg, Volkmar Schulz, Torsten J. Solf, Gordon D. DeMeester, Michael A. Morich
  • Publication number: 20140062486
    Abstract: A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Johan A. OVERWEG, Volkmar SCHULZ, Torsten J. SOLF, Gordon D. DeMEESTER, Michael A. MORICH
  • Patent number: 8547100
    Abstract: An imaging system comprises: a magnetic resonance scanner (30) having a cylindrical bore (36) defining a cylinder axis (DA), the magnetic resonance scanner having a gradient coil (10, 10?) defining an isocenter (64) within the bore and an isoplane (66) passing through the isocenter and oriented transverse to the cylinder axis; a ring of radiation detectors (60a, 60b, 60?) arranged concentric with the cylindrical bore and configured to detect radiation emanating from within the bore; and a generally annular electronic circuit board (62, 62?) arranged concentric with the cylindrical bore and centered on the isoplane, the generally annular electronic circuit board operatively connected with the ring of radiation detectors to generate electrical signals indicative of detection of radiation by the ring of radiation detectors.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: October 1, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Torsten J. Solf, Volkmar Schulz, Bjoern Weissler
  • Patent number: 8525116
    Abstract: An imaging system includes positron emission tomography (PET) detectors (30) shrouded by broadband galvanic isolation (99) and coincidence detection electronics (50, 50ob), or other radiation detectors. A magnetic resonance scanner includes a main magnet (12, 14) and magnetic field gradient assembly (20, 20?, 22, 24) configured to acquire imaging data from a magnetic resonance examination region at least partially overlapping the examination region surrounded by the PET detectors. A radio frequency coil (80, 100) has plurality of conductors (66, 166) and a radio frequency screen (88, 188, 188EB, 188F) substantially surrounding the conductors to shield the coil at the magnetic resonance frequency. The radiation detectors are outside of the radio frequency screen. Magnetic resonance-compatible radiation collimators or shielding (60, 62) containing an electrically non-conductive and non-ferromagnetic heavy atom oxide material are disposed with the radiation detectors.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 3, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Volkmar Schulz, Torsten J. Solf, Gordon D. DeMeester, Michael A. Morich
  • Patent number: 8378677
    Abstract: In a hybrid PET-MR system, PET detector elements (30) are added in the bore (14), in close proximity to the gradient coils (16). Fluid coolant is supplied to transfer heat from the PET detector elements (30). Thermal insulation (80) insulates the fluid coolant and the PET detector elements (30) from the gradient coils (16). In some embodiments, a first coolant path (90) is in thermal communication with the electronics, a second coolant path (92) is in thermal communication with the light detectors, and a thermal barrier (94, 96) is arranged between the first and second coolant paths such that the first and second coolant paths can be at different temperatures (Te, Td). In some embodiments a sealed heat pipe (110) is in thermal communication with a heat sink such that working fluid in the heat pipe undergoes vaporization/condensation cycling to transfer heat from the detector elements to the heat sink.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: February 19, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Michael A. Morich, Gordon D. Demeester, Jerome J. Griesmer, Torsten J. Solf, Volkmar Schulz, Bjoern Weissler
  • Publication number: 20120241631
    Abstract: A generally cylindrical set of coil windings includes primary coil windings and shield coil windings at a larger radial position than the primary coil windings, and an arcuate or annular central gap that is free of coil windings, has an axial extent of at least ten centimeters, and spans at least a 180° angular interval. Connecting conductors disposed at each edge of the central gap electrically connect selected primary and secondary coil windings. In a scanner setting, a main magnet is disposed outside of the generally cylindrical set of coil windings. In a hybrid scanner setting, an annular ring of positron emission tomography (PET) detectors is disposed in the central gap of the generally cylindrical set of coil windings.
    Type: Application
    Filed: June 6, 2012
    Publication date: September 27, 2012
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Johan A. OVERWEG, Volkmar SCHULZ, Torsten J. SOLF, Gordon D. DEMEESTER, Michael A. MORICH
  • Publication number: 20110018541
    Abstract: An imaging system comprises: a magnetic resonance scanner (30) having a cylindrical bore (36) defining a cylinder axis (DA), the magnetic resonance scanner having a gradient coil (10, 10?) defining an isocenter (64) within the bore and an isoplane (66) passing through the isocenter and oriented transverse to the cylinder axis; a ring of radiation detectors (60a, 60b, 60?) arranged concentric with the cylindrical bore and configured to detect radiation emanating from within the bore; and a generally annular electronic circuit board (62, 62?) arranged concentric with the cylindrical bore and centered on the isoplane, the generally annular electronic circuit board operatively connected with the ring of radiation detectors to generate electrical signals indicative of detection of radiation by the ring of radiation detectors.
    Type: Application
    Filed: February 2, 2009
    Publication date: January 27, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Torsten J. Solf, Volkmar Schulz, Bjoern Weissler
  • Publication number: 20100219347
    Abstract: An imaging system includes positron emission tomography (PET) detectors (30) shrouded by broadband galvanic isolation (99) and coincidence detection electronics (50, 50ob), or other radiation detectors. A magnetic resonance scanner includes a main magnet (12, 14) and magnetic field gradient assembly (20, 20?, 22, 24) configured to acquire imaging data from a magnetic resonance examination region at least partially overlapping the examination region surrounded by the PET detectors. A radio frequency coil (80, 100) has plurality of conductors (66, 166) and a radio frequency screen (88, 188, 188EB, 188F) substantially surrounding the conductors to shield the coil at the magnetic resonance frequency. The radiation detectors are outside of the radio frequency screen. Magnetic resonance-compatible radiation collimators or shielding (60, 62) containing an electrically non-conductive and non-ferromagnetic heavy atom oxide material are disposed with the radiation detectors.
    Type: Application
    Filed: June 23, 2008
    Publication date: September 2, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Volkmar Schulz, Torsten J. Solf, Gordon D. Demeester, Michael A. Morich
  • Publication number: 20100188082
    Abstract: In a hybrid PET-MR system, PET detector elements (30) are added in the bore (14), in close proximity to the gradient coils (16). Fluid coolant is supplied to transfer heat from the PET detector elements (30). Thermal insulation (80) insulates the fluid coolant and the PET detector elements (30) from the gradient coils (16). In some embodiments, a first coolant path (90) is in thermal communication with the electronics, a second coolant path (92) is in thermal communication with the light detectors, and a thermal barrier (94, 96) is arranged between the first and second coolant paths such that the first and second coolant paths can be at different temperatures (Te, Td). In some embodiments a sealed heat pipe (110) is in thermal communication with a heat sink such that working fluid in the heat pipe undergoes vaporization/condensation cycling to transfer heat from the detector elements to the heat sink.
    Type: Application
    Filed: June 23, 2008
    Publication date: July 29, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Michael A. MORICH, Gordon D. DEMEESTER, Jerome J. GRIESMER, Torsten J. SOLF, Volkmar SCHULZ, Bjoern WEISSLER
  • Patent number: 7750305
    Abstract: In a radiation detector (10) for a time of flight positron emission tomography (PET) scanner (2), a radiation sensitive member (20) generates a signal (22) indicative of a radiation detection event. A time to digital converter (34) includes digital delay elements (40) operatively interconnected as a ring oscillator (36, 36?) and readout circuitry (50, 52, 60, 82, 84, 86, 88) configured to generate a timestamp for the radiation detection event based at least on a state of the ring oscillator when the signal is generated. Delay trim elements (46) operatively connected to the digital delay elements set a substantially common delay for the digital delay elements.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: July 6, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Torsten J. Solf, Peter Fischer
  • Publication number: 20090250616
    Abstract: In a radiation detector (10) for a time of flight positron emission tomography (PET) scanner (2), a radiation sensitive member (20) generates a signal (22) indicative of a radiation detection event. A time to digital converter (34) includes digital delay elements (40) operatively interconnected as a ring oscillator (36, 36?) and readout circuitry (50, 52, 60, 82, 84, 86, 88) configured to generate a timestamp for the radiation detection event based at least on a state of the ring oscillator when the signal is generated. Delay trim elements (46) operatively connected to the digital delay elements set a substantially common delay for the digital delay elements.
    Type: Application
    Filed: May 29, 2007
    Publication date: October 8, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Torsten J. Solf, Peter Fischer