Patents by Inventor Toshihiro Omori

Toshihiro Omori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959161
    Abstract: A copper-based alloy material including a multiphase structure containing a matrix of a ? phase and a precipitation phase of a B2-type crystal structure dispersed in the matrix, where the copper-based alloy material includes a composition containing 8.6 to 12.6% by mass of Al, 2.9 to 8.9% by mass of Mn, 3.2 to 10.0% by mass of Ni, and Cu.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: April 16, 2024
    Assignees: FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Sumio Kise, Fumiyoshi Yamashita, Misato Fujii, Koji Ishikawa, Ryosuke Kainuma, Toshihiro Omori, Nobuyasu Matsumoto
  • Publication number: 20220415547
    Abstract: A permanent magnet alloy according to the present disclosure contains Mn at a content not lower than 41% by atom and not higher than 53% by atom; Al at a content not lower than 46% by atom and not higher than 53% by atom; and Cu at a content not lower than 0.5% by atom and not higher than 10% by atom. The alloy contains a stable phase, having a tetragonal structure, at a ratio not lower than 50%.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 29, 2022
    Inventors: Ryosuke KAINUMA, Toshihiro OMORI, Xiao XU, Naoki HASHIMOTO, Tomohito MAKI
  • Publication number: 20210317557
    Abstract: The present invention provides a highly fracture resistant, fatigue resistant copper-based alloy material and the like for which, for example, even when the material is subjected to repeated deformation consisting of loading of stress for applying a shape-memory alloy-specific strain and unloading of same followed return to the original shape, the alloy material is not susceptible to persistence of such strain. This copper-based alloy material has a multiphase structure in which a B2-type crystal structure precipitated phase is dispersed in a ?-phase-comprising matrix.
    Type: Application
    Filed: August 30, 2019
    Publication date: October 14, 2021
    Applicants: FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Sumio KISE, Fumiyoshi YAMASHITA, Misato FUJII, Koji ISHIKAWA, Ryosuke KAINUMA, Toshihiro OMORI, Nobuyasu MATSUMOTO
  • Patent number: 11118255
    Abstract: A Cu—Al—Mn-based alloy material (1) having a composition comprising: given contents of Al and Mn, and a given total content of at least one selected from Ni and the like; with the balance being Cu and unavoidable impurities, wherein the alloy material has a shape elongated in the working direction (RD), wherein a grain length ax in the RD is R/2 or less to the width or diameter (R), a grain length bx in a direction perpendicular to the RD is R/4 or less, and the amount of grains X (2) is 15% or less, and wherein a grain length a in the RD and a grain length b in the direction perpendicular to the RD satisfy: a?b, and an angle formed by the normal line of the (111) plane and the RD is 15° or larger, the amount of grains Y? (3) is 85% or more.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: September 14, 2021
    Assignees: FURUKAWA ELECTRIC CO., LTD., FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY
    Inventors: Misato Fujii, Sumio Kise, Toyonobu Tanaka, Kenji Nakamizo, Koji Ishikawa, Toshihiro Omori, Ryosuke Kainuma
  • Patent number: 11066728
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Zr: 0.01 mass % or more and 3.0 mass % or less and Hf: 0.01 mass % or more and 3.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 20, 2021
    Assignees: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Koichi Sakairi, Kunihiro Tanaka, Tatsuya Nakazawa
  • Patent number: 11053570
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Ru: 0.8 mass % or more and 5.0 mass % or less and Re: 0.8 mass % or more and 5.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: July 6, 2021
    Assignees: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Koichi Sakairi, Kunihiro Tanaka, Tatsuya Nakazawa
  • Patent number: 10920305
    Abstract: A Fe-based shape memory alloy material, containing 25 atom % to 42 atom % of Mn, 9 atom % to 13 atom % of Al, 5 atom % to 12 atom % of Ni, and 5.1 atom % to 15 atom % of Cr, with the balance being Fe and unavoidable impurities; a method of producing the same; and a wire material and sheet material composed of the alloy material.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: February 16, 2021
    Assignees: TOHOKU UNIVERSITY, FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro Omori, Ryosuke Kainuma, Yuki Noguchi, Sumio Kise, Toyonobu Tanaka
  • Publication number: 20190338398
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Ru: 0.8 mass % or more and 5.0 mass % or less and Re: 0.8 mass % or more and 5.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Application
    Filed: December 4, 2017
    Publication date: November 7, 2019
    Applicants: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Koichi SAKAIRI, Kunihiro TANAKA, Tatsuya NAKAZAWA
  • Publication number: 20190316229
    Abstract: The present invention relates to a Ni-based heat-resistant alloy including Ir: 5.0 mass % or more and 50.0 mass % or less, Al: 1.0 mass % or more and 8.0 mass % or less, W: 5.0 mass % or more and 25.0 mass % or less, and balance Ni, having an L12-structured ?? phase present in the matrix, and including at least one of Zr: 0.01 mass % or more and 3.0 mase/0 or less and Hf: 0.01 mass % or more and 3.0 mass % or less. This Ni-based heat-resistant alloy has improved toughness over a conventional Ni-based heat-resistant alloy based on a Ni—Ir—Al—W-based alloy, and is also excellent in ambient-temperature strength.
    Type: Application
    Filed: December 5, 2017
    Publication date: October 17, 2019
    Applicants: TOHOKU TECHNO ARCH CO., LTD., TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Koichi SAKAIRI, Kunihiro TANAKA, Tatsuya NAKAZAWA
  • Patent number: 10400311
    Abstract: A wrought material containing a Cu—Al—Mn-based alloy, in which an existence frequency of a coincidence grain boundary with a ? value of 3 or less is 35% or more but 75% or less, and which has a recrystallized microstructure substantially formed from a ? single phase; and the use thereof.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: September 3, 2019
    Assignees: FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD., TOHOKU UNIVERSITY
    Inventors: Sumio Kise, Toyonobu Tanaka, Kenji Nakamizo, Koji Ishikawa, Misato Fujii, Toshihiro Omori, Ryosuke Kainuma
  • Patent number: 10351939
    Abstract: A Cu—Al—Mn-based alloy having superelastic characteristics and having a recrystallized texture substantially formed of a ? single phase, in which 70% or more of crystal grains is within a range of 0° to 50° in a deviation angle from <001> orientation of a crystalline orientation measured in a working direction by electron back-scatter diffraction patterning.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: July 16, 2019
    Assignees: TOHOKU UNIVERSITY, FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro Omori, Shingo Kawata, Ryosuke Kainuma, Kiyohito Ishida, Toyonobu Tanaka, Kenji Nakamizo, Sumio Kise, Koji Ishikawa, Misato Nakano, Satoshi Teshigawara
  • Publication number: 20190153571
    Abstract: A Fe-based shape memory alloy material, containing 25 atom % to 42 atom % of Mn, 9 atom % to 13 atom % of Al, 5 atom % to 12 atom % of Ni, and 5.1 atom % to 15 atom % of Cr, with the balance being Fe and unavoidable impurities; a method of producing the same; and a wire material and sheet material composed of the alloy material.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Applicants: TOHOKU UNIVERSITY, FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD.
    Inventors: Toshihiro OMORI, Ryosuke KAINUMA, Yuki NOGUCHI, Sumio KISE, Toyonobu TANAKA
  • Publication number: 20190133803
    Abstract: A hallux valgus correction device (1) for correcting hallux valgus, the hallux valgus correction device including: a corrector (10) made of a superelastic alloy; and a fixture (2, 3, and 4) formed from a fabric to attach the corrector, in which the corrector has a hinge part (11) that is rotationally movable in the bending direction and the stretching direction of one toe or a plurality of toes in need of correction.
    Type: Application
    Filed: December 28, 2018
    Publication date: May 9, 2019
    Applicants: FURUKAWA TECHNO MATERIAL CO., LTD., FURUKAWA ELECTRIC CO., LTD., Tohoku University
    Inventors: Sumio KISE, Toyonobu TANAKA, Ryosuke KAINUMA, Toshihiro OMORI, Masahito HATORI, Tadakuni KAMEDA, Norihito SUZUKI
  • Patent number: 10094012
    Abstract: The present invention relates to a NiIr-base heat-resistant alloy which includes a Ni—Ir—Al—W-base alloy which contains Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, W: 5.0 to 20.0 mass %, and the balance is Ni, and a ?? phase having an L12 structure precipitating and dispersing in a matrix as an essential strengthening phase, and a ratio (Y/X) of a peak intensity (Y) of (201) plane of the Ir3W phase observed in the range of 2?=48° to 50° to a peak intensity (X) of (111) plane of the ?? phase observed in the range of 2?=43° to 45° in X-ray diffraction analysis is 0.5 or less. The alloy exhibits good high-temperature property stably.
    Type: Grant
    Filed: March 23, 2015
    Date of Patent: October 9, 2018
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Kunihiro Tanaka, Muneki Nakamura, Koichi Sakairi, Tatsuya Nakazawa
  • Patent number: 10081855
    Abstract: The present invention is a heat-resistant Ni-base alloy including a Ni—Ir—Al—W alloy having essential additive elements of Ir, Al, and W added to Ni, wherein the heat-resistant Ni-base alloy includes Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, and W: 5.0 to 20.0 mass %, the balance being Ni, and a ?? phase having an L12 structure disperses in a matrix as an essential strengthening phase. The heat-resistant material including the Ni-base alloy may contain one or more additive elements selected from B: 0.001 to 0.1 mass %, Co: 5.0 to 20.0 mass %, Cr: 1.0 to 25.0 mass %, Ta: 1.0 to 10.0 mass %, Nb: 1.0 to 5.0 mass %, Ti: 1.0 to 5.0 mass %, V: 1.0 to 5.0 mass %, and Mo: 1.0 to 5.0 mass %, or 0.001 to 0.5 mass % of C.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: September 25, 2018
    Assignees: TANAKA KIKINZOKU KOGYO K.K., TOHOKU TECHNO ARCH CO., LTD.
    Inventors: Kiyohito Ishida, Toshihiro Omori, Yutaka Sato, Kunihiro Tanaka, Muneki Nakamura, Koichi Sakairi
  • Publication number: 20180116235
    Abstract: Provided is a production method for a concentrated product, using a freeze-concentration method having a high yield rate (low loss rate) that is practically applicable, as required in large-scale (commercial scale) production. The production method for concentrated product using the freeze-concentration method includes: an ice crystal generation step in which a fluid to be treated is cooled, ice crystals of the fluid are generated in the fluid, and a mixed fluid to be treated is formed wherein the mixed fluid to be treated is comprised of the ice crystals and a concentrated fluid produced from the fluid to be treated by generating the ice crystals in the fluid thereby the fluid is concentrated; and an ice crystal separation step in which the mixed fluid is separated into the concentrated fluid to be treated and the ice crystals, and the separated concentrated fluid be treated is retrieved.
    Type: Application
    Filed: August 29, 2014
    Publication date: May 3, 2018
    Applicant: MEIJI CO., LTD.
    Inventors: Kazunori KASHIWAGI, Takefumi ICHIMURA, Yoshinori SATAKE, Tetsu KAMIYA, Toshihiro OMORI, Hiroki MATSUBARA
  • Patent number: 9913484
    Abstract: A method using a membrane-concentration method and a freeze-concentration method includes: a membrane-concentration step in which a fluid to be treated is cooled and a membrane-concentrated fluid is prepared by membrane-concentrating the solid content concentration thereof by more than 1.5 times; an ice crystal generation step in which said membrane-concentrated fluid is cooled, ice crystals of said membrane-concentrated fluid are generated in said membrane-concentrated fluid, and a mixed fluid to be treated is formed wherein said mixed fluid to be treated is comprised of said ice crystals and a concentrated fluid to be treated produced from said membrane-concentrated fluid by generating said ice crystals in said membrane-concentrated fluid thereby said membrane-concentrated fluid is concentrated; and an ice crystal separation step in which said mixed fluid is separated into said concentrated fluid to be treated and said ice crystals, and said separated concentrated fluid to be treated is retrieved.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 13, 2018
    Assignee: MEIJI CO., LTD.
    Inventors: Kazunori Kashiwagi, Takefumi Ichimura, Yoshinori Satake, Tetsu Kamiya, Toshihiro Omori, Hiroki Matsubara
  • Publication number: 20170130310
    Abstract: The present invention relates to a NiIr-base heat-resistant alloy which includes a Ni—Ir—Al—W-base alloy which contains Ir: 5.0 to 50.0 mass %, Al: 1.0 to 8.0 mass %, W: 5.0 to 20.0 mass %, and the balance is Ni, and a ?? phase having an L12 structure precipitating and dispersing in a matrix as an essential strengthening phase, and a ratio (Y/X) of a peak intensity (Y) of (201) plane of the Ir3W phase observed in the range of 2?=48° to 50° to a peak intensity (X) of (111) plane of the ?? phase observed in the range of 2?=43° to 45° in X-ray diffraction analysis is 0.5 or less. The alloy exhibits good high-temperature property stably.
    Type: Application
    Filed: March 23, 2015
    Publication date: May 11, 2017
    Applicant: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Kiyohito ISHIDA, Toshihiro OMORI, Yutaka SATO, Kunihiro TANAKA, Muneki NAKAMURA, Koichi SAKAIRI, Tatsuya NAKAZAWA
  • Patent number: 9617622
    Abstract: A hydrogen gas generating member includes a metal alloy having dispersed aluminum. The metal alloy includes an Al—X alloy, where X is Sn: 10.1 to 99.5% by mass, Bi: 30.1 to 99.5% by mass, In: 10.1 to 99.5% by mass, Sn +Bi: 20.1 to 99.5% by mass, Sn +In: to 10 to 99.5% by mass, Bi+In: 20.1 to 99.5% by mass, or Sn+Bi+In: 20 to 99.5% by mass. Hydrogen gas is generated by bringing the hydrogen gas generating member into contact with water.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: April 11, 2017
    Assignee: Japan Science and Technology Agency
    Inventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Yoshikazu Takaku, Takehito Hagisawa
  • Patent number: 9605334
    Abstract: The present invention is a heat-resistant material comprising a Rh-based alloy, wherein the Rh-based alloy is a high heat-resistant and high strength alloy comprising a Rh-based alloy where Al and W as essential additive elements are added to Rh (0.2 to 15.0 mass % of Al, 15.0 to 45.0 mass % of W and Rh as the remainder), and a ?? phase (Rh3 (Al, W)) having an L12 structure is dispersed as a strengthening phase in a matrix. The Rh-based alloy of the present invention can be further improved in workability and high temperature oxidation characteristics by optionally adding B, C, Mg, Ca, Y, La or misch metals, Ni, Co, Cr, Fe, Mo, Ti, Nb, Ta, V, Zr, Hf, Ir, Re, Pd, Pt or Ru as an additive element. The Rh-based alloy of the present invention is a heat-resistant material having excellent high-temperature-resistant characteristics and a good balance of factors such as weight.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: March 28, 2017
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Kiyohito Ishida, Yoshikazu Takaku, Toshihiro Omori