Patents by Inventor Toshikazu Shishikura

Toshikazu Shishikura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130337367
    Abstract: The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji MONDEN, Tadatoshi KUROZUMI, Toshikazu SHISHIKURA
  • Publication number: 20130330635
    Abstract: A nonaqueous electrolytic solution for a secondary battery containing an electrolyte, a solvent and methyl difluoroacetate as an additive in an amount of not less than 0.05 part by mass and not more than 10 parts by mass based on 100 parts by mass of the whole solvent.
    Type: Application
    Filed: February 15, 2012
    Publication date: December 12, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Toshikazu Shishikura, Koji Irie, Akio Hasatani
  • Patent number: 8541334
    Abstract: The present invention provides a catalyst carrier having excellent durability and capable of attaining high catalytic ability without increasing the specific surface area thereof, and a catalyst obtainable by using the catalyst carrier. The catalyst carrier of the present invention comprises a metal oxycarbonitride, preferably the metal contained in the metal oxycarbonitride comprises at least one selected from the group consisting of niobium, tin, indium, platinum, tantalum, zirconium, copper, iron, tungsten, chromium, molybdenum, hafnium, titanium, vanadium, cobalt, manganese, cerium, mercury, plutonium, gold, silver, iridium, palladium, yttrium, ruthenium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and nickel. Moreover, the catalyst of the present invention comprises the catalyst carrier and a catalyst metal supported on the catalyst carrier.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: September 24, 2013
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8496903
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium oxycarbonitride represented by a compositional formula NbCxNyOz (wherein x, y and z represent a ratio of the numbers of the atoms, 0.05?x<0.7, 0.01?y<0.7, 0.4?z<2.5, 1.0<x+y+z<2.56, and 4.0?4x+3y+2z).
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: July 30, 2013
    Assignee: Show A Denko K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8404610
    Abstract: It is an object of the present invention to provide a production process which can produce a fuel cell catalyst having excellent durability and high oxygen reducing activity. The process for producing a fuel cell catalyst including a metal-containing oxycarbonitride of the present invention includes a grinding step for grinding the oxycarbonitride using a ball mill, wherein the metal-containing oxycarbonitride is represented by a specific compositional formula; balls in the ball mill have a diameter of 0.1 to 1.0 mm; the grinding time using the ball mill is 1 to 45 minutes; the rotating centrifugal acceleration in grinding using the ball mill is 2 to 20 G; the grinding using the ball mill is carried out in such a state that the metal-containing oxycarbonitride is mixed with a solvent containing no oxygen atom in the molecule; and when the ball mill is a planetary ball mill, the orbital centrifugal acceleration mill is 5 to 50 G.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: March 26, 2013
    Assignee: Showa Denko K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Publication number: 20120258381
    Abstract: There is provided an ink for forming a fuel cell catalyst layer that is capable of efficiently forming a high-performance fuel cell catalyst layer inexpensively. The ink for forming a fuel cell catalyst layer of the present invention comprises a fuel cell catalyst, an electron conductive material, a proton conductive material and a solvent, wherein the fuel cell catalyst comprises a metal-containing oxycarbonitride that contains niobium and/or titanium; the mass ratio [(A)/(B)] of the content (A) of the fuel cell catalyst to the content (B) of the electron conductive material is 1 to 6; and the mass ratio [(D)/(C)] of the content (D) of the proton conductive material to the total content (C) of the fuel cell catalyst and the electron conductive material is 0.2 to 0.6.
    Type: Application
    Filed: December 13, 2010
    Publication date: October 11, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Takuya Imai, Yasuaki Wakizaka, Toshikazu Shishikura, Masaki Horikita, Kenichiro Ota
  • Patent number: 8268490
    Abstract: Catalyst layers include an electrocatalyst having high oxygen reduction activity that is useful as an alternative material to platinum catalysts. Uses of the catalyst layers are also disclosed. A catalyst layer of the invention includes an electrode substrate and an electrocatalyst on the surface of the electrode substrate, and the electrocatalyst is formed of a metal compound obtained by hydrolyzing a metal salt or a metal complex.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: September 18, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura
  • Patent number: 8182950
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 22, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Publication number: 20120115064
    Abstract: It is an object of the present invention to provide a production process which can produce a fuel cell catalyst having excellent durability and high oxygen reducing activity. The process for producing a fuel cell catalyst including a metal-containing oxycarbonitride of the present invention includes a grinding step for grinding the oxycarbonitride using a ball mill, wherein the metal-containing oxycarbonitride is represented by a specific compositional formula; balls in the ball mill have a diameter of 0.1 to 1.0 mm; the grinding time using the ball mill is 1 to 45 minutes; the rotating centrifugal acceleration in grinding using the ball mill is 2 to 20 G; the grinding using the ball mill is carried out in such a state that the metal-containing oxycarbonitride is mixed with a solvent containing no oxygen atom in the molecule; and when the ball mill is a planetary ball mill, the orbital centrifugal acceleration mill is 5 to 50 G.
    Type: Application
    Filed: July 14, 2010
    Publication date: May 10, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Publication number: 20120094207
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal element M, carbon, nitrogen and oxygen, wherein the catalyst shows peaks at 1340 cm?1 to 1365 cm?1 and at 1580 cm?1 to 1610 cm?1 as analyzed by Raman spectroscopy and the metal element M is one selected from titanium, iron, niobium, zirconium and tantalum. The catalysts of the invention are stable and are not corroded in acidic electrolytes or at high potential, have high oxygen reducing ability and are inexpensive compared to platinum. Fuel cells having the catalysts are therefore relatively inexpensive and have high performance.
    Type: Application
    Filed: April 27, 2010
    Publication date: April 19, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Takuya Imai, Toshikazu Shishikura, Ryuji Monden, Kenichiro Ota
  • Publication number: 20120083407
    Abstract: [Problem] To provide a catalyst which has high oxygen reduction activity, also has excellent durability, and is inexpensive and excellent in electric power generation cost as compared with noble metal catalysts such as platinum. [Solution to problem] A catalyst for a polymer electrolyte fuel cell, including a graphitized carbon powder and a niobium oxycarbonitride or a titanium oxycarbonitride as an active substance, and a polymer electrolyte fuel cell using the catalyst.
    Type: Application
    Filed: June 2, 2010
    Publication date: April 5, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Toshikazu Shishikura, Ryuji Monden, Kunchan Lee, Yasuaki Wakizaka, Kenichiro Ota
  • Publication number: 20120070763
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability, and processes for producing the catalysts and uses of the catalysts. The catalyst of the invention includes a metal oxycarbonitride that contains at least one metal selected from tantalum, vanadium, molybdenum and zirconium (hereinafter, also referred to as “metal M” or simply “M”) and does not contain any of platinum, titanium and niobium.
    Type: Application
    Filed: May 11, 2010
    Publication date: March 22, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Takuya Imai, Toshikazu Shishikura, Yasuaki Wakizaka, Kenichiro Ota
  • Publication number: 20120058415
    Abstract: [Object] The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. [Solution] A catalyst of the invention includes a metal oxycarbonitride that contains titanium and at least one metal (hereinafter, also referred to as “metal M” or simply “M”) selected from silver, calcium, strontium, yttrium, ruthenium, lanthanum, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
    Type: Application
    Filed: May 11, 2010
    Publication date: March 8, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Publication number: 20120003548
    Abstract: Catalysts are provided which can catalyze both the oxygen reduction during the discharge of a secondary air battery and the oxygen production in the recharging of the battery and which are stable at a high potential in the recharging. The invention has been accomplished based on the finding that a catalyst including an oxycarbonitride of a specific transition metal selected from, for example, titanium, zirconium, hafnium, vanadium, niobium and tantalum can catalyze both the oxygen reduction during the discharge of a secondary air battery and the oxygen production in the recharging of the battery and is also stable at a high potential in the recharging.
    Type: Application
    Filed: March 16, 2010
    Publication date: January 5, 2012
    Applicant: SHOWA DENKO K.K.
    Inventor: Toshikazu Shishikura
  • Publication number: 20110229793
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Application
    Filed: July 23, 2008
    Publication date: September 22, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Publication number: 20110189583
    Abstract: The invention provides catalysts which are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium-containing oxycarbonitride having I2/(I1+I2) of not less than 0.25 wherein I1 is the maximum X-ray diffraction intensity at diffraction angles 2? of 25.45° to 25.65° and I2 is the maximum X-ray diffraction intensity at diffraction angles 2?=2? of 25.65° to 26.0° according to X-ray powder diffractometry (Cu—K? radiation).
    Type: Application
    Filed: October 6, 2009
    Publication date: August 4, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Takuya Imai, Ryuji Monden, Toshikazu Shishikura
  • Publication number: 20110183234
    Abstract: The invention has an object of providing catalysts that are not corroded in acidic electrolytes or at high potential, have excellent durability and show high oxygen reducing ability. An aspect of the invention is directed to a process wherein metal carbonitride mixture particles or metal oxycarbonitride mixture particles are produced from an organometallic compound of a Group IV or V transition metal, a metal salt of a Group IV or V transition metal, or a mixture of these compounds using laser light as a light source.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 28, 2011
    Inventors: Yasuaki Wakizaka, Toshikazu Shishikura
  • Publication number: 20110059386
    Abstract: Catalysts of the invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalysts include a niobium oxycarbonitride represented by a compositional formula NbCxNyOz (wherein x, y and z represent a ratio of the numbers of the atoms, 0.05?x<0.7, 0.01?y<0.7, 0.4?z<2.5, 1.0<x+y+z<2.56, and 4.0?4x+3y+2z).
    Type: Application
    Filed: January 16, 2009
    Publication date: March 10, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura
  • Publication number: 20110053049
    Abstract: The invention provides processes for producing fuel cell catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The process for producing fuel cell catalysts includes a step (I) of heating a carbonitride of a transition metal in an inert gas containing oxygen, and a step (II) of heating the product from the step (I) in an inert gas that does not substantially contain oxygen.
    Type: Application
    Filed: March 23, 2009
    Publication date: March 3, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Takuya Imai, Ryuji Monden, Toshikazu Shishikura
  • Publication number: 20110020729
    Abstract: Catalysts of the present invention are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal oxycarbonitride containing two metals M selected from the group consisting of tin, indium, platinum, tantalum, zirconium, titanium, copper, iron, tungsten, chromium, molybdenum, hafnium, vanadium, cobalt, cerium, aluminum and nickel, and containing zirconium and/or titanium.
    Type: Application
    Filed: March 23, 2009
    Publication date: January 27, 2011
    Applicant: SHOWDA DENKO K.K.
    Inventors: Ryuji Monden, Tadatoshi Kurozumi, Toshikazu Shishikura, Yasuaki Wakizaka