Patents by Inventor Toshikazu Takeda

Toshikazu Takeda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7393803
    Abstract: A dielectric ceramic composition of the present invention contains, as a main component, a tungsten-bronze-type composite oxide represented by a composition formula (K1-yNay)Sr2Nb5O15 (wherein 0?y<0.2) and, as an auxiliary component, Mn in an amount in the range of 0.1 to 40 parts by mole relative to 100 parts by mole of the main component.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: July 1, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toshikazu Takeda, Nobuyuki Wada, Yukako Takahashi
  • Publication number: 20080045399
    Abstract: A dielectric ceramic composition of the present invention contains, as a main component, a tungsten-bronze-type composite oxide represented by a composition formula (K1-yNay)Sr2Nb5O15 (wherein 0?y<0.2) and, as an auxiliary component, Mn in an amount in the range of 0.1 to 40 parts by mole relative to 100 parts by mole of the main component.
    Type: Application
    Filed: October 17, 2007
    Publication date: February 21, 2008
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Toshikazu Takeda, Nobuyuki Wada, Yukako Takahashi
  • Publication number: 20070138918
    Abstract: A piezoelectric ceramic containing a primary component having a composition represented by Ag1-x-yLixKy)NbO3 (in which 0.075?x<0.4 and 0.03?y<0.3) and at least one metal oxide of Fe, Co, Ni, Cu, Zn, and Bi in an amount of 0.01 to 10 parts by weight in the form of MO2 (in which M indicates Fe, Co, Ni, Cu, Zn and Bi) to 100 parts by weight of the primary component.
    Type: Application
    Filed: February 13, 2007
    Publication date: June 21, 2007
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yukako Takahashi, Toshikazu Takeda
  • Publication number: 20070131895
    Abstract: The piezoelectric ceramic composition of the present invention contains a main component represented by general formula {(1-n)(Ag1-xLix)m(Nb1-yTay)O3-n(M1,M2)M3O3} or {(1-n)(Ag1-xLix)m(Nb1-yTay)O3-nM4M5O3} and x, y, m, and n are defined to be 0.075?x<0.40, 0?y<0.2, 0.98?m?1.0, and 0.01?n?0.1. M1 is a trivalent metal element such as Bi; M2 is a monovalent metal element such as K, Na, Li or Ag; M3 and M5 each are a tetravalent metal element such as Ti, Zr, Sn or Hf; and M4 is a divalent metal element such as Ba, Sr, Ca, or Mg. With this composition, an highly reliable lead-free piezoelectric ceramic composition having a high relative dielectric constant and good piezoelectric properties such as electromechanical coupling factor k33 and piezoelectric constant d33 can be provided, and a highly reliable lead-free piezoelectric element can be fabricated using the piezoelectric ceramic composition.
    Type: Application
    Filed: January 22, 2007
    Publication date: June 14, 2007
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Toshikazu Takeda
  • Patent number: 6810577
    Abstract: The present invention provides a method of efficiently manufacturing a dielectric waveguide with high reliability and precision. In the method, a resist material is formed on the outer surface of a green compact provided with a removal inhibiting layer, and predetermined portion of the green compact defined by the resist material is removed by the sand blasting method using the resist material as a mask, until the removal inhibiting layer is exposed to obtain a shaped green compact structure. The thus-obtained structure is fired to obtain a sintered body which comprises a dielectric strip and a wing.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: November 2, 2004
    Assignee: Murata Manufacturing Co. Ltd.
    Inventor: Toshikazu Takeda
  • Patent number: 6808796
    Abstract: A continuous reinforcing fiber sheet in which reinforcing fibers are arranged at an arbitrary angle to the main axis. The continuous reinforcing fiber sheet is well applicable to pultrusion forming without the risk of the reinforcing fibers being dispersed. This permits use of the continuous reinforcing fiber sheet in a long fiber-reinforced plastic structural member having remarkably improved torsional rigidity. The continuous reinforcing fiber sheet 1 has a continuous resin-penetrable support sheet 2 and a reinforcing fiber layer 3 held by the resin-penetrable support sheet 2. Long reinforcing fibers 4 in the reinforcing fiber layer 3 have substantially a certain length (F) and are arranged in the longitudinal direction of the resin-penetrable support sheet 2 at a prescribed angle (&agr;) to the longitudinal direction of the resin-penetrable support sheet 2.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: October 26, 2004
    Assignees: Nippon Steel Composite Co., Ltd., Nippon Steel Corporation
    Inventors: Makiji Miyao, Toshikazu Takeda, Shinkichi Murakami
  • Publication number: 20030152357
    Abstract: The present invention provides a method of efficiently manufacturing a dielectric waveguide with high reliability and precision. In the method, a resist material is formed on the outer surface of a green compact provided with a removal inhibiting layer, and predetermined portion of the green compact defined by the resist material is removed by the sand blasting method using the resist material as a mask, until the removal inhibiting layer is exposed to obtain a shaped green compact structure. The thus-obtained structure is fired to obtain a sintered body which comprises a dielectric strip and a wing.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 14, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Toshikazu Takeda
  • Patent number: 6585566
    Abstract: A method for manufacturing a dielectric waveguide at a low manufacturing cost, the dielectric waveguide comprising a pair of conductor plates approximately parallel to each other and the dielectric strip provided therebetween, which can form a dielectric strip having accurate individual dimensions without generating cracks and chips during processing. The method comprises the steps of forming a resist pattern on a green sheet containing at least a powdered inorganic material and an organic binder, removing a predetermined amount of the green sheet corresponding to an opening in the resist pattern by the use of a mask, removing the resist pattern, and firing the green sheet. In the step of removing the predetermined amount of the green sheet, the rate of removal is continuously or intermittently changed along the depth direction of the green sheet.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Murata Manufacturing Co. Ltd
    Inventor: Toshikazu Takeda
  • Patent number: 6568067
    Abstract: The present invention provides a method of efficiently manufacturing a dielectric waveguide with high reliability and precision. In the method, a resist material is formed on the outer surface of a green compact provided with a removal inhibiting layer, and predetermined portion of the green compact defined by the resist material is removed by the sand blasting method using the resist material as a mask, until the removal inhibiting layer is exposed to obtain a shaped green compact structure. The thus-obtained structure is fired to obtain a sintered body which comprises a dielectric strip and a wing.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: May 27, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Toshikazu Takeda
  • Patent number: 6503416
    Abstract: A piezoelectric ceramic composition is provided that does not contain Pb, and yet has a large electromechanical coupling coefficient in comparison with a bismuth layered compound, as well as a piezoelectric ceramic element using the composition. This piezoelectric ceramic composition includes at least the elements Ag, Li, Nb, and O, and has an electromechanical coupling coefficient k33 of not less than about 20%.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: January 7, 2003
    Assignee: Murata Manufacturing Co. Ltd.
    Inventors: Toshikazu Takeda, Yukio Sakabe
  • Publication number: 20020049130
    Abstract: A piezoelectric ceramic composition is provided that does not contain Pb, and yet has a large electromechanical coupling coefficient in comparison with a bismuth layered compound, as well as a piezoelectric ceramic element using the composition. This piezoelectric ceramic composition includes at least the elements Ag, Li, Nb, and O, and has an electromechanical coupling coefficient k33 of not less than about 20%.
    Type: Application
    Filed: August 28, 2001
    Publication date: April 25, 2002
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Toshikazu Takeda, Yukio Sakabe
  • Publication number: 20010045408
    Abstract: A method for manufacturing a dielectric waveguide at a low manufacturing cost, the dielectric waveguide comprising a pair of conductor plates approximately parallel to each other and the dielectric strip provided therebetween, which can form a dielectric strip having accurate individual dimensions without generating cracks and chips during processing. The method comprises the steps of forming a resist pattern on a green sheet containing at least a powdered inorganic material and an organic binder, removing a predetermined amount of the green sheet corresponding to an opening in the resist pattern by the use of a mask, removing the resist pattern, and firing the green sheet. In the step of removing the predetermined amount of the green sheet, the rate of removal is continuously or intermittently changed along the depth direction of the green sheet.
    Type: Application
    Filed: April 26, 2001
    Publication date: November 29, 2001
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Toshikazu Takeda
  • Publication number: 20010025409
    Abstract: The present invention provides a method of efficiently manufacturing a dielectric waveguide with high reliability and precision. In the method, a resist material is formed on the outer surface of a green compact provided with a removal inhibiting layer, and predetermined portion of the green compact defined by the resist material is removed by the sand blasting method using the resist material as a mask, until the removal inhibiting layer is exposed to obtain a shaped green compact structure. The thus-obtained structure is fired to obtain a sintered body which comprises a dielectric strip and a wing.
    Type: Application
    Filed: February 9, 2001
    Publication date: October 4, 2001
    Inventor: Toshikazu Takeda
  • Patent number: 5876658
    Abstract: An electrode for an electric double layer capacitor in which resin is used as a starting material and the manufacturing cost is low and a method of manufacturing the same are disclosed. A method of manufacturing an electrode for an electric double layer capacitor containing carbonized resin includes heating resin at a temperature equal to or higher than the temperature for finishing endothermic reaction of the resin upon melting (softening to be fluidized) of the resin and equal to or lower than the temperature for starting oxidizing reaction in an atmosphere of a pressure range of 0.
    Type: Grant
    Filed: March 28, 1996
    Date of Patent: March 2, 1999
    Assignee: Isuzu Motors Limited
    Inventor: Toshikazu Takeda
  • Patent number: 5494711
    Abstract: Disclosed herein is a method of preparing an InSb thin film, which comprises a step of physically sticking InSb powder onto a major surface of a substrate, and a step of depositing an InSb thin film on the major surface of the substrate provided with the as-stuck InSb powder by a method such as vacuum evaporation.
    Type: Grant
    Filed: January 11, 1994
    Date of Patent: February 27, 1996
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toshikazu Takeda, Yoshifumi Ogiso, Takuji Nakagawa, Atsuo Senda
  • Patent number: 5122210
    Abstract: A process for producing a bicycle frame of a fiber-reinforced plastics (FRP) including the steps of: forming parts of a bicycle frame such as an upper pipe, a lower pipe, a vertical pipe, a chain stay and a rear fork, or a combination thereof, with an FRP; arranging the bicycle frame parts in a structure of the bicycle frame; forming, with an FRP, lug portions onto the arranged bicycle frame parts at a required position whereat the bicycle frame parts are to be connected and fixed to each other; and curing all of the lug portions at one time, to thereby simultaneously accomplish an assembling of the bicycle frame.
    Type: Grant
    Filed: June 18, 1990
    Date of Patent: June 16, 1992
    Assignees: Nippon Steel Corporation, Nippon Steel Chemical Co., Ltd.
    Inventors: Kenji Kubomura, Hironori Maikuma, Nobuyuki Tsuji, Hiromi Kimura, Toshikazu Takeda