Patents by Inventor Toshirou Nagoya

Toshirou Nagoya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130263979
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision that at least 90% of Cu contained is dissolved in a steel matrix and that Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled to be less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: October 1, 2012
    Publication date: October 10, 2013
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Publication number: 20110176954
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled to be less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: March 8, 2011
    Publication date: July 21, 2011
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Publication number: 20100119404
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled to be less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Publication number: 20090053093
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb?8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: November 6, 2008
    Publication date: February 26, 2009
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Patent number: 7094295
    Abstract: A method of manufacturing a ferritic stainless steel sheet having good workability with less anisotropy. The steps include providing a ferritic stainless steel comprising C up to about 0.03 mass %, N up to about 0.03 mass %, Si up to about 2.0 mass %, Mn up to about 2.0 mass %, Ni up to about 0.6 mass %, Cr about 9–35 mass %, Nb about 0.15–0.80 mass % and the balance being Fe except inevitable impurities; precipitation-heating said stainless steel at a temperature in a range of 700–850° C. for a time period not longer than 25 hours; and finish-annealing said stainless steel at a temperature in a range of 900–1100° C. for a time period not longer than 1 minute.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: August 22, 2006
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita
  • Patent number: 6935529
    Abstract: A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000 N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: August 30, 2005
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Hanji Ishikawa, Shigeru Morikawa, Toshirou Nagoya, Toshiro Adachi, Naoto Hiramatsu, Satoshi Suzuki
  • Publication number: 20040170518
    Abstract: A ferritic stainless steel useful as conduit members for emission of automotive exhaust gas consists of C up to 0.03 mass %, Si up to 1.0 mass %, Mn up to 1.5 mass %, Ni up to 0.6 mass %, 10-20 mass % of Cr, Nb up to 0.50 mass %, 0.8-2.0 mass % of Cu, Al up to 0.03 mass %, 0.03-0.20 mass % of V, N up to 0.03 mass % and the balance being Fe except inevitable impurities with a provision of Nb≧8(C+N). The steel may further contain 0.05-0.30 mass % of Ti and/or 0.0005-0.02 mass % of B. Mo as an inevitable impurity is controlled less than 0.10 mass %. The steel has excellent formability, low-temperature toughness and weldability as well as the same heat-resistance as Nb, Mo-alloyed steel.
    Type: Application
    Filed: January 2, 2004
    Publication date: September 2, 2004
    Inventors: Manabu Oku, Yoshitomo Fujimura, Toshirou Nagoya
  • Publication number: 20040084116
    Abstract: A method of manufacturing a ferritic stainless steel sheet having good workability with less anisotropy. The steps include providing a ferritic stainless steel comprising C up to about 0.03 mass %, N up to about 0.03 mass %, Si up to about 2.0 mass %, Mn up to about 2.0 mass %, Ni up to about 0.6 mass %, Cr about 9-35 mass %, Nb about 0.15-0.80 mass % and the balance being Fe except inevitable impurities; precipitation-heating said stainless steel at a temperature in a range of 700-850° C. for a time period not longer than 25 hours; and finish-annealing said stainless steel at a temperature in a range of 900-1100° C. for a time period not longer than 1 minute.
    Type: Application
    Filed: October 28, 2003
    Publication date: May 6, 2004
    Applicant: Nisshin Steel Co., Ltd.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita
  • Patent number: 6673166
    Abstract: The newly proposed ferritic stainless steel sheet consists of C up to 0.03 mass %, N up to 0.03 mass %, Si up to 2.0 mass %, Mn up to 2.0 mass %, Ni up to 0.6 mass %, 9-35 mass % Cr, 0.15-0.80 mass % Nb, optionally one or more of Ti up to 0.5 mass %, Mo up to 3.0 mass %, Cu up to 2.0 mass % and Al up to 6.0 mass %, and the balance being Fe except inevitable impurities, comprises metallurgical structure involving precipitates of 2 &mgr;m or less in particle size at a ratio not more than 0.5 mass % and has crystalline orientation on a rolled surface at ¼ depth of thickness with Integrated Density defined by the formula (a) not less than 1.2. The ferritic stainless steel sheet is manufactured by 25 hours or shorter precipitation-treatment at 700-850° C. in prior to 1 minute or shorter finish-annealing at 900-1100° C. Integrated Intensity is made greater than 2.0 by controlling particle size of precipitates not more than 0.5 &mgr;m, so as to realize good workability with less in-plane anisotropy.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: January 6, 2004
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita
  • Publication number: 20020117239
    Abstract: The newly proposed ferritic stainless steel sheet consists of C up to 0.03 mass %, N up to 0.03 mass %, Si up to 2.0 mass %, Mn up to 2.0 mass %, Ni up to 0.6 mass %, 9-35 mass % Cr, 0.15-0.80 mass % Nb, optionally one or more of Ti up to 0.5 mass %, Mo up to 3.0 mass %, Cu up to 2.0 mass % and Al up to 6.0 mass %, and the balance being Fe except inevitable impurities, comprises metallurgical structure involving precipitates of 2 &mgr;m or less in particle size at a ratio not more than 0.5 mass % and has crystalline orientation on a rolled surface at ¼ depth of thickness with Integrated Density defined by the formula (a) not less than 1.2. The ferritic stainless steel sheet is manufactured by 25 hours or shorter precipitation-treatment at 700-850 ° C in prior to 1 minute or shorter finish-annealing at 900-1100 ° C. Integrated Intensity is made greater than 2.0 by controlling particle size of precipitates not more than 0.5 &mgr;m, so as to realize good workability with less in-plane anisotropy.
    Type: Application
    Filed: December 21, 2001
    Publication date: August 29, 2002
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Manabu Oku, Yoshitomo Fujimura, Yoshiaki Hori, Toshirou Nagoya, Yasutoshi Kunitake, Takeo Tomita