Patents by Inventor Toshiyuki Kuramoto

Toshiyuki Kuramoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9455464
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11 g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11 a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: September 27, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20160218385
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11 g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11 a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Application
    Filed: April 6, 2016
    Publication date: July 28, 2016
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Tetsuya KUWABARA, Tomoyuki AWAZU, Naho MIZUHARA, Toshio UEDA, Hideyuki DOI, Toshiyuki KURAMOTO
  • Patent number: 9325024
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: April 26, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Patent number: 9132384
    Abstract: Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: September 15, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Patent number: 9136552
    Abstract: Provided are a gas decomposition component in which an electrochemical reaction is used to reduce the running cost and high treatment performance can be achieved; and a method for producing the gas decomposition component. The gas decomposition component includes a cylindrical MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1 sandwiched between the anode and the cathode; a porous metal body 11s that is inserted on the inner-surface side of the cylindrical MEA and is in contact with the first electrode; and a central conductive rod 11k inserted so as to serve as an electrically conductive shaft of the porous metal body 11s.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 15, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Patent number: 8865367
    Abstract: Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: October 21, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Patent number: 8628616
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: January 14, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eiryo Takasuka, Toshio Ueda, Toshiyuki Kuramoto, Masaki Ueno
  • Publication number: 20130260280
    Abstract: Provided are a gas decomposition component, a method for producing a gas decomposition component, and a power generation apparatus. A gas decomposition component 10 includes a cylindrical-body MEA 7 including a first electrode 2 disposed on an inner-surface side, a second electrode 5 disposed on an outer-surface side, and a solid electrolyte 1 sandwiched between the first electrode and the second electrode; and a porous metal body 11s inserted on the inner-surface side of the cylindrical-body MEA and electrically connected to the first electrode, wherein the gas decomposition component further includes a porous conductive-paste-coated layer 11g formed on an inner circumferential surface of the first electrode, and a metal mesh sheet 11a disposed on an inner circumferential side of the conductive-paste-coated layer, and an electrical connection between the first electrode and the porous metal body is established through the conductive-paste-coated layer and the metal mesh sheet.
    Type: Application
    Filed: November 29, 2011
    Publication date: October 3, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130224612
    Abstract: Provided are a gas decomposition component, a power generation apparatus including the gas decomposition component, and a method for decomposing a gas. A gas decomposition component includes a cylindrical MEA including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure; a first gas channel through which a first gas that is decomposed flows, the first gas channel being disposed inside the cylindrical MEA; and a second gas channel through which a second gas flows, the second gas channel being disposed outside the cylindrical MEA, wherein the gas decomposition component further includes a heater for heating the entirety of the component; and a preheating pipe through which the first gas to be introduced into the first gas channel passes beforehand to be preheated.
    Type: Application
    Filed: October 21, 2011
    Publication date: August 29, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130171542
    Abstract: A gas decomposition component includes a cylindrical membrane electrode assembly (MEA) including a first electrode layer, a cylindrical solid electrolyte layer, and a second electrode layer in order from an inside toward an outside, in a layered structure, wherein an end portion of the cylindrical MEA is sealed, a gas guide pipe is inserted through another end portion of the cylindrical MEA into an inner space of the cylindrical MEA to form a cylindrical channel between the gas guide pipe and an inner circumferential surface of the cylindrical MEA, and a gas flowing through the gas guide pipe toward the sealed portion is made to flow out of the gas guide pipe in a region near the sealed portion so that a flow direction of the gas is reversed and the gas flows through the cylindrical channel in a direction opposite to the flow direction in the guide pipe.
    Type: Application
    Filed: October 13, 2011
    Publication date: July 4, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Naho Mizuhara, Toshio Ueda, Hideyuki Doi, Toshiyuki Kuramoto
  • Publication number: 20130101920
    Abstract: Provided are a catalyst, an electrode, a fuel cell, a gas detoxification apparatus, and the like that can promote a general electrochemical reaction causing gas decomposition or the like. A catalyst according to the present invention is used for promoting an electrochemical reaction and is chain particles 3 formed of an alloy particles containing nickel (Ni) and at least one selected from the group consisting of iron (Fe), cobalt (Co), chromium (Cr), tungsten (W), and copper (Cu).
    Type: Application
    Filed: June 27, 2012
    Publication date: April 25, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Publication number: 20130089810
    Abstract: Provided is a gas decomposition component that employs an electrochemical reaction to reduce the running cost and can have high treatment performance. A gas decomposition component includes a cylindrical-body MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1; and a porous metal body 11s that is inserted on the inner-surface side of the cylindrical-body MEA and is electrically connected to the anode 2, wherein a metal mesh sheet 11a is disposed between the anode 2 and the porous metal body 11s. Another gas decomposition component includes the cylindrical MEA 7 and silver-paste-coated wiring 12g formed on the cathode 5, wherein the silver-paste-coated wiring 12g is a porous body.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 11, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Toshiyuki Kuramoto, Toshio Ueda, Tomoyuki Awazu
  • Publication number: 20130089806
    Abstract: Provided is a gas decomposition component that employs an electrochemical reaction and can have high treatment performance, in particular, an ammonia decomposition component. The gas decomposition component includes a MEA 7 including a solid electrolyte 1 and an anode 2 and a cathode 5 that are disposed so as to sandwich the solid electrolyte; Celmets 11s electrically connected to the anode 2; a heater 41 that heats the MEA; and an inlet 17 through which a gaseous fluid containing a gas is introduced into the MEA, an outlet 19 through which the gaseous fluid having passed through the MEA is discharged, and a passage P extending between the inlet and the outlet, wherein the Celmets 11s are discontinuously disposed along the passage P and, with respect to a middle position 15 of the passage, the length of the Celmets disposed is larger on the side of the outlet than on the side of the inlet.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 11, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Publication number: 20130084514
    Abstract: Provided are a gas decomposition component in which an electrochemical reaction is used to reduce the running cost and high treatment performance can be achieved; and a method for producing the gas decomposition component. The gas decomposition component includes a cylindrical MEA 7 including an anode 2 on an inner-surface side, a cathode 5 on an outer-surface side, and a solid electrolyte 1 sandwiched between the anode and the cathode; a porous metal body 11s that is inserted on the inner-surface side of the cylindrical MEA and is in contact with the first electrode; and a central conductive rod 11k inserted so as to serve as an electrically conductive shaft of the porous metal body 11s.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 4, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro Hiraiwa, Masatoshi Majima, Tetsuya Kuwabara, Tomoyuki Awazu, Toshio Ueda, Toshiyuki Kuramoto
  • Patent number: 8349403
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: January 8, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eiryo Takasuka, Toshio Ueda, Toshiyuki Kuramoto, Masaki Ueno
  • Patent number: 8349083
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: January 8, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Eiryo Takasuka, Toshio Ueda, Toshiyuki Kuramoto, Masaki Ueno
  • Publication number: 20120024227
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Application
    Filed: October 11, 2011
    Publication date: February 2, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Eiryo TAKASUKA, Toshio UEDA, Toshiyuki KURAMOTO, Masaki UENO
  • Publication number: 20120003142
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Inventors: Eiryo Takasuka, Toshio Ueda, Toshiyuki Kuramoto, Masaki Ueno
  • Publication number: 20090148704
    Abstract: A vapor-phase process apparatus and a vapor-phase process method capable of satisfactorily maintaining quality of processes even when different types of processes are performed are obtained. A vapor-phase process apparatus includes a process chamber, gas supply ports serving as a plurality of gas introduction portions, and a gas supply portion (a gas supply member, a pipe, a flow rate control device, a pipe, and a buffer chamber). The process chamber allows flow of a reaction gas therein. The plurality of gas supply ports are formed in a wall surface (upper wall) of the process chamber along a direction of flow of the reaction gas. The gas supply portion can supply a gas into the process chamber at a different flow rate from each of one gas supply port and another gas supply port different from that one gas supply port among the plurality of gas supply ports.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 11, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Eiryo TAKASUKA, Toshio Ueda, Toshiyuki Kuramoto, Masaki Ueno
  • Patent number: 5887341
    Abstract: To position a wire-connected terminal TW and cope with a multitude of kinds of wire-connected terminals TW, a block 30 is provided for each wire-connected terminal TW. The block 30 includes recesses 34, 37 for detachably accommodating the wire-connected terminal TW. A part of the accommodated wire-connected terminal TW is exposed such that it can be gripped by hands 51, 52. The block 30 also includes a positioning means 38 for positioning the terminal TW accommodated in the recesses 34, 37 with respect to the hands 51, 52. Since the terminal TW is securely positioned in a transferring step of transferring the wire-connected terminal TW to the hands 51, 52, the succeeding step performed by the hands 51, 52 can be securely performed.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: March 30, 1999
    Assignee: Sumitomo Wiring Systems, Ltd.
    Inventors: Hideaki Ito, Kouichi Ueda, Teiji Sakuma, Kazumitsu Fukada, Yasutoshi Takemoto, Shigeru Kato, Masakazu Kashiwase, Masaaki Fujii, Toshiyuki Kuramoto