Patents by Inventor Toshiyuki TASHIRO

Toshiyuki TASHIRO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10495350
    Abstract: An ejector-type refrigeration cycle has a compressor, an ejector module, a discharge capacity control section, and a pressure difference determining section. The ejector module has a body providing a gas-liquid separating space. The pressure difference determining section determines whether a low pressure difference operating condition is met. The low pressure difference operating condition is an operating condition in which a pressure difference obtained by subtracting a low-pressure side refrigerant pressure from a high-pressure side refrigerant pressure a predetermined reference pressure difference or lower. The body is provided with an oil return passage that guides a part of a liquid-phase refrigerant to flow from the gas-liquid separating space to a suction side of the compressor. The discharge capacity control section sets a refrigerant discharge capacity to be a predetermined reference discharge capacity or higher when the low pressure difference operating condition is determined to be met.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: December 3, 2019
    Assignee: DENSO CORPORATION
    Inventors: Makoto Kume, Masahiro Yamada, Toshiyuki Tashiro, Yoshinori Araki, Haruyuki Nishijima, Youhei Nagano, Yoshiyuki Yokoyama
  • Patent number: 10442274
    Abstract: An ejector refrigeration cycle device includes: a radiator that dissipates heat from a refrigerant discharged from a compressor; an ejector module that decompresses the refrigerant cooled by the radiator; and an evaporator that evaporates a liquid-phase refrigerant separated in a gas-liquid separation space of the ejector module. A grille shutter is disposed as an inflow-pressure increasing portion between the radiator and a cooling fan blowing the outside air toward the radiator. The grille shutter is operated to decrease the volume of the outside air to be blown toward the radiator when an outside air temperature is equal to or lower than a reference outside air temperature, thereby increasing the pressure of the inflow refrigerant to flow into a nozzle passage of the ejector module.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 15, 2019
    Assignee: DENSO CORPORATION
    Inventors: Toshiyuki Tashiro, Masahiro Yamada, Makoto Kume, Haruyuki Nishijima, Youhei Nagano, Yoshiyuki Yokoyama, Yoshinori Araki
  • Publication number: 20170307259
    Abstract: When intended to increase a refrigerant discharge capacity of a compressor in an ejector refrigeration cycle device at start-up of the compressor, the refrigerant discharge capacity is increased in such a manner that an increase amount in the refrigerant discharge capacity of the compressor per predetermined time period is lower than a maximum capacity increase amount per predetermined time period enabled by the compressor. Thus, even if a gas-liquid two-phase refrigerant flows into a refrigerant inflow passage forming a swirling-flow generating portion, the flow velocity of the gas-liquid two-phase refrigerant is prevented from becoming high, so that it can reduce friction noise that would be caused when the gas-liquid two-phase refrigerant circulates through the refrigerant inflow passage, further suppressing the generation of noise from the ejector.
    Type: Application
    Filed: August 18, 2015
    Publication date: October 26, 2017
    Inventors: Yoshinori ARAKI, Toshiyuki TASHIRO, Masahiro YAMADA, Makoto KUME, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA
  • Publication number: 20170299227
    Abstract: An ejector-type refrigeration cycle has a compressor, an ejector module, a discharge capacity control section, and a pressure difference determining section. The ejector module has a body providing a gas-liquid separating space. The pressure difference determining section determines whether a low pressure difference operating condition is met. The low pressure difference operating condition is an operating condition in which a pressure difference obtained by subtracting a low-pressure side refrigerant pressure from a high-pressure side refrigerant pressure a predetermined reference pressure difference or lower. The body is provided with an oil return passage that guides a part of a liquid-phase refrigerant to flow from the gas-liquid separating space to a suction side of the compressor. The discharge capacity control section sets a refrigerant discharge capacity to be a predetermined reference discharge capacity or higher when the low pressure difference operating condition is determined to be met.
    Type: Application
    Filed: August 18, 2015
    Publication date: October 19, 2017
    Applicant: DENSO CORPORATION
    Inventors: Makoto KUME, Masahiro YAMADA, Toshiyuki TASHIRO, Yoshinori ARAKI, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA
  • Publication number: 20170297416
    Abstract: An ejector refrigeration cycle device includes: a radiator that dissipates heat from a refrigerant discharged from a compressor; an ejector module that decompresses the refrigerant cooled by the radiator; and an evaporator that evaporates a liquid-phase refrigerant separated in a gas-liquid separation space of the ejector module. A grille shutter is disposed as an inflow-pressure increasing portion between the radiator and a cooling fan blowing the outside air toward the radiator. The grille shutter is operated to decrease the volume of the outside air to be blown toward the radiator when an outside air temperature is equal to or lower than a reference outside air temperature, thereby increasing the pressure of the inflow refrigerant to flow into a nozzle passage of the ejector module.
    Type: Application
    Filed: August 18, 2015
    Publication date: October 19, 2017
    Applicant: DENSO CORPORATION
    Inventors: Toshiyuki TASHIRO, Masahiro YAMADA, Makoto KUME, Haruyuki NISHIJIMA, Youhei NAGANO, Yoshiyuki YOKOYAMA, Yoshinori ARAKI