Patents by Inventor Toshiyuki Tsutsui

Toshiyuki Tsutsui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8629075
    Abstract: The present invention provides a process for producing an ?-olefin polymer comprising polymerizing or copolymerizing (a) C3 or higher ?-olefin(s) in the presence of an olefin polymerization catalyst comprising solid titanium catalyst component (I) containing titanium, magnesium, halogen, and a compound with a specific structure having two or more ether linkages and organometallic catalyst component (II) with high catalytic activity. In this process, particularly even in (co)polymerizing (a) higher olefin(s), demineralization is unnecessary. A 4-methyl-1-pentene-based polymer obtained by polymerization using the catalyst of the present invention is excellent in tacticity, transparency, heat resistance, and releasability, and the polymer is particularly suitable for a release film.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: January 14, 2014
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tetsuhiro Matsumoto, Toshiyuki Tsutsui, Kisu Ro, Kourei Kuroiwa, Takushi Nagata, Atsushi Shibahara, Tatsuya Nakamura, Tetsunori Shinozaki
  • Patent number: 7888437
    Abstract: The process for producing an olefin polymer according to the present invention is characterized in that it comprises polymerizing an olefin having 3 or more carbon atoms in the presence of a catalyst for olefin polymerization containing a solid titanium catalyst component (I) which contains titanium, magnesium, halogen, and a cyclic ester compound (a) specified by the following formula (1): wherein n is an integer of 5 to 10, R2 and R3 are each independently COOR1 or a hydrogen atom, and at least one of R2 and R3 is COOR1; and R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is a hydrogen atom) in the cyclic backbone may be replaced with a double bond, and an organometallic compound catalyst component (II), at an internal pressure of the polymerization vessel which is 0.25 times or more as high as the saturation vapor pressure of the olefin at a polymerization temperature.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: February 15, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7888438
    Abstract: A catalyst for olefin polymerization of the present invention includes a solid titanium catalyst component (I) including titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is a hydrogen atom, and an organometal compound catalyst component (II). When this catalyst for olefin polymerization is used, an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: February 15, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7875350
    Abstract: Ethylene polymer particles having an intrinsic viscosity [?] of 5 dl/g to 30 dl/g, a degree of crystallinity of as high as 80% or more, and a specific shape on the surface of the particles. The ethylene polymer particles can be obtained by carrying out polymerization of olefins including ethylene using an olefin polymerization catalyst containing a solid titanium catalyst component including magnesium, halogen and titanium under specific conditions. The ethylene polymer particles obtained by a solid phase method, such as solid phase drawing molding, are capable of providing a molded article with high strength.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: January 25, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tetsuhiro Matsumoto, Tetsunori Shinozaki, Yasushi Nakayama, Kunihiko Mizumoto, Satoshi Akiyama, Toshiyuki Tsutsui
  • Publication number: 20100324239
    Abstract: The present invention provides a process for producing an ?-olefin polymer comprising polymerizing or copolymerizing (a) C3 or higher ?-olefin(s) in the presence of an olefin polymerization catalyst comprising solid titanium catalyst component (I) containing titanium, magnesium, halogen, and a compound with a specific structure having two or more ether linkages and organometallic catalyst component (II) with high catalytic activity. In this process, particularly even in (co)polymerizing (a) higher olefin(s), demineralization is unnecessary. A 4-methyl-1-pentene-based polymer obtained by polymerization using the catalyst of the present invention is excellent in tacticity, transparency, heat resistance, and releasability, and the polymer is particularly suitable for a release film.
    Type: Application
    Filed: August 6, 2010
    Publication date: December 23, 2010
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Tetsuhiro Matsumoto, Toshiyuki Tsutsui, Kisu Ro, Kourei Kuroiwa, Takushi Nagata, Atsushi Shibahara, Tatsuya Nakamura, Tetsunori Shinozaki
  • Patent number: 7741419
    Abstract: A process for producing an olefin polymer is provided, in which ethylene and at least one kind or more of monomers selected from ?-olefins are polymerized by a high temperature solution polymerization in a temperature range between 120 and 300° C., in the presence of an olefin polymerization catalyst composed of a bridged metallocene compound represented by general formula [I] described below and at least one kind or more compounds (B) selected from (b-1) an organoaluminum oxy-compound, (b-2) a compound capable of forming an ion pair in a reaction with the bridged metallocene compound mentioned above, and (b-3) an organoaluminum compound.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: June 22, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Tohi, Kenji Sugimura, Toshiyuki Tsutsui
  • Patent number: 7687579
    Abstract: An ethylene (co)polymer of the present invention is a (co)polymer with excellent moldability and mechanical properties and either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 4 to 20 carbon atoms. The (co)polymer has methyl branches measured by 13C-NMR less than 0.1 in number per 1,000 carbon atoms and Mw/Mn measured by GPC not lower than 1.8 and lower than 4.5. The (co)polymer is either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 3 to 20 carbon atoms. The melt tension (MT) and the swell ratio (SR) satisfy the relation; log(MT)>12.9?7.15×SR; and the intrinsic viscosity ([?]) and the melt flow rate (MFR) satisfy the relation; [?]>1.85×MFR?0.192 in the case of MFR<1 and the relation; [?]>1.85×MFR?0.213 in the case of MFR?1. Such an ethylene (co)polymer can be usable for various molding applications and especially suitable for pipes.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: March 30, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Tetsuji Kasai, Junji Saito, Naoto Matsukawa, Kazutaka Tsuru, Makoto Mitani, Terunori Fujita, Shiro Otsuzuki, Tetsuhiro Matsumoto, Toshiyuki Tsutsui
  • Patent number: 7669761
    Abstract: Conventionally, to acquire specific information of a customer, acquisition of the information is only possible by using information such as a bank account number owned by the customer, and further it is not possible to present information beneficial to the customer unless information owned by the customer is acquired from the customer. More specifically, there is a problem in that much time is necessary for a customer or a system operator to input such information. To solve the above-stated problem, the present invention outputs information associated with a customer by using biometric information including a face image. More specifically, biometric information is acquired from a user of a first terminal unit included in a plurality of terminal units, and information associated with an operation made by the user is identified. Then, when the user is going to use a second terminal unit (or when the second terminal unit executes processing of information on the user based on inputs by a third party, etc.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: March 2, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Tsutsui, Masataka Itakura, Tomohiro Hamada, Akihito Itou, Kazuma Kurata
  • Patent number: 7649062
    Abstract: A solid titanium catalyst component (I) of the present invention is characterized in that it contains titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom. When using this solid titanium catalyst component (I), an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: January 19, 2010
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Patent number: 7563849
    Abstract: An ethylene (co)polymer of the present invention is a (co)polymer with excellent moldability and mechanical properties and either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 4 to 20 carbon atoms. The (co)polymer has methyl branches measured by 13C-NMR less than 0.1 in number per 1,000 carbon atoms and Mw/Mn measured by GPC not lower than 1.8 and lower than 4.5. The (co)polymer is either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 3 to 20 carbon atoms. The melt tension (MT) and the swell ratio (SR) satisfy the relation; log(MT)>12.9?7.15×SR; and the intrinsic viscosity ([?]) and the melt flow rate (MFR) satisfy the relation; [?]>1.85×MFR?0.192 in the case of MFR<1 and the relation; [?]>1.85×MFR?0.213 in the case of MFR?1. Such an ethylene (co)polymer can be usable for various molding applications and especially suitable for pipes.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: July 21, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Tetsuji Kasai, Junji Saito, Naoto Matsukawa, Kazutaka Tsuru, Makoto Mitani, Terunori Fujita, Shiro Otsuzuki, Tetsuhiro Matsumoto, Toshiyuki Tsutsui
  • Publication number: 20090100377
    Abstract: It is possible to provide a service which can be easily customized in accordance with a user's preference. A method for providing information by a data processing device is applied to a data processing device which can acquire information from other information providing site via a network. In the state of display as a menu icon in a menu region on a desktop, no operation of menu is performed. In the state when the menu icon is dragged from the menu region to the desktop, it is possible to obtain operation of the menu as a Widget icon which displays the information acquired via the network.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 16, 2009
    Inventors: Asako Miyamoto, Tsugumichi Owaki, Takuya Akashi, Toshiyuki Tsutsui
  • Publication number: 20090069515
    Abstract: A solid titanium catalyst component (I) of the present invention is characterized in that it contains titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom. When using this solid titanium catalyst component (I), an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Application
    Filed: January 19, 2006
    Publication date: March 12, 2009
    Applicant: MITSUI CHEMICALS,INC.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Publication number: 20080306228
    Abstract: The process for producing an olefin polymer according to the present invention is characterized in that it comprises polymerizing an olefin having 3 or more carbon atoms in the presence of a catalyst for olefin polymerization containing a solid titanium catalyst component (I) which contains titanium, magnesium, halogen, and a cyclic ester compound (a) specified by the following formula (1): wherein n is an integer of 5 to 10, R2 and R3 are each independently COOR1 or a hydrogen atom, and at least one of R2 and R3 is COOR1; and R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is a hydrogen atom) in the cyclic backbone may be replaced with a double bond, and an organometallic compound catalyst component (II), at an internal pressure of the polymerization vessel which is 0.25 times or more as high as the saturation vapor pressure of the olefin at a polymerization temperature.
    Type: Application
    Filed: January 19, 2006
    Publication date: December 11, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Publication number: 20080171651
    Abstract: The present invention provides a process for preparing a low molecular weight olefin (co)polymer having a narrow molecular weight distribution with high productivity, by polymerizing or copolymerizing an olefin in the presence of an olefin polymerization catalyst comprising (A) a specific Group 4 transition metal compound, and (B) at least one compound selected from the group consisting of (B-1) an organometallic compound, (B-2) an organoaluminum compound, (B-3) an organoaluminum oxy-compound, and (B-4) a compound which reacts with the Group 4 transition metal compound (A) to form an ion pair; and compounds useful in that process.
    Type: Application
    Filed: May 24, 2007
    Publication date: July 17, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Yasushi Tohi, Naomi Urakawa, Koji Endo, Koji Kawai, Kazunori Okawa, Chiemi Okawa, Toshiyuki Tsutsui
  • Publication number: 20080125555
    Abstract: A catalyst for olefin polymerization of the present invention includes a solid titanium catalyst component (I) including titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom, and an organometal compound catalyst component (II). When this catalyst for olefin polymerization is used, an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Application
    Filed: July 26, 2007
    Publication date: May 29, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Publication number: 20080097050
    Abstract: A solid titanium catalyst component (I) of the present invention is characterized in that it contains titanium, magnesium, halogen, and a cyclic ester compound (a) represented by the following formula (1): wherein n is an integer of 5 to 10; R2 and R3 are each independently COOR1 or R, and at least one of R2 and R3 is COOR1; a single bond (excluding Ca—Ca bonds, and a Ca—Cb bond in the case where R3 is R) in the cyclic backbone may be replaced with a double bond; a plurality of R1's are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms; and a plurality of R's are each independently a hydrogen atom or a substituent, but at least one of R's is not a hydrogen atom. When using this solid titanium catalyst component (I), an olefin polymer having a broad molecular weight distribution can be produced.
    Type: Application
    Filed: July 26, 2007
    Publication date: April 24, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Kazuhisa Matsunaga, Hisao Hashida, Toshiyuki Tsutsui, Kunio Yamamoto, Atsushi Shibahara, Tetsunori Shinozaki
  • Publication number: 20080090081
    Abstract: The present invention provides ethylene polymer particles obtained by a solid phase method such as solid phase drawing molding and capable of providing a molded article with high strength. The ethylene polymer particles have an intrinsic viscosity [?] of 5 dl/g to 30 dl/g, a degree of crystallinity of as high as 80% or more, and a specific shape on the surface of the particles. The ethylene polymer particles can be obtained, for example, by carrying out polymerization of olefins including ethylene using an olefin polymerization catalyst containing a solid titanium catalyst component including magnesium, halogen and titanium under specific conditions.
    Type: Application
    Filed: July 25, 2007
    Publication date: April 17, 2008
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Tetsuhiro Matsumoto, Tetsunori Shinozaki, Yasushi Nakayama, Kunihiko Mizumoto, Satoshi Akiyama, Toshiyuki Tsutsui
  • Patent number: 7335716
    Abstract: An ethylene (co)polymer of the present invention is a (co)polymer with excellent moldability and mechanical properties and either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 4 to 20 carbon atoms. The (co)polymer has methyl branches measured by 13C-NMR less than 0.1 in number per 1,000 carbon atoms and Mw/Mn measured by GPC not lower than 1.8 and lower than 4.5. The (co)polymer is either an ethylene homopolymer or a copolymer of ethylene and an ?-olefin of 3 to 20 carbon atoms. The melt tension (MT) and the swell ratio (SR) satisfy the relation; log(MT)>12.9?7.15×SR; and the intrinsic viscosity ([?]) and the melt flow rate (MFR) satisfy the relation; [?]>1.85×MFR?0.192 in the case of MFR?1 and the relation; [?]>1.85×MFR?0.213 in the case of MFR?1. Such an ethylene (co)polymer can be usable for various molding applications and especially suitable for pipes.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: February 26, 2008
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Takahashi, Tetsuji Kasai, Junji Saito, Naoto Matsukawa, Kazutaka Tsuru, Makoto Mitani, Terunori Fujita, Shiro Otsuzuki, Tetsuhiro Matsumoto, Toshiyuki Tsutsui
  • Publication number: 20080004412
    Abstract: The present invention provides a process for producing an ?-olefin polymer comprising polymerizing or copolymerizing (a) C3 or higher ?-olefin(s) in the presence of an olefin polymerization catalyst comprising solid titanium catalyst component (I) containing titanium, magnesium, halogen, and a compound with a specific structure having two or more ether linkages and organometallic catalyst component (II) with high catalytic activity. In this process, particularly even in (co)polymerizing (a) higher olefin(s), demineralization is unnecessary. A 4-methyl-1-pentene-based polymer obtained by polymerization using the catalyst of the present invention is excellent in tacticity, transparency, heat resistance, and releasability, and the polymer is particularly suitable for a release film.
    Type: Application
    Filed: November 16, 2005
    Publication date: January 3, 2008
    Inventors: Tetsuhiro Matsumoto, Toshiyuki Tsutsui, Kisu Ro, Kourei Kuroiwa, Takushi Nagata, Atsushi Shibahara, Tatsuya Nakamura, Tooru Tanaka, Tetsunori Shinozaki
  • Patent number: RE42957
    Abstract: A process for producing an olefin polymer is provided, in which ethylene and at least one kind or more of monomers selected from ?-olefins are polymerized by a high temperature solution polymerization in a temperature range between 120 and 300° C., in the presence of an olefin polymerization catalyst composed of a bridged metallocene compound represented by general formula [I] described below and at least one kind or more compounds (B) selected from (b-1) an organoaluminum oxy-compound, (b-2) a compound capable of forming an ion pair in a reaction with the bridged metallocene compound mentioned above, and (b-3) an organoaluminum compound.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: November 22, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Tohi, Kenji Sugimura, Toshiyuki Tsutsui