Patents by Inventor Toyotaka Yuasa

Toyotaka Yuasa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11514388
    Abstract: The purpose of the present invention is to provide a system which, in a product delivery procedure, monitors and manages, more simply and reliably, a deviation from a managed temperature during shipment. To solve the problem, provided is a logistics system, comprising: an information reading and transmitting device which reads an information code which is provided on a product and transmits data which is included in the information code; a server which accumulates, via a communications network, the data which is transmitted from the information reading and transmitting device; and a terminal device which refers to the data which is accumulated in the server via the communications network. The information code is formed from a pattern which changes with an occurrence of a deviation from a specified temperature. The system employs the information code.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: November 29, 2022
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Hiroyuki Kagawa, Hiroshi Sasaki, Toyotaka Yuasa, Kenichi Souma
  • Patent number: 10989700
    Abstract: A purpose of the present invention is to provide a temperature history indicator that allows for visual confirmation of whether the temperature is at or below a prescribed temperature as well as simple conversion of this information into data. A temperature history indicator according to the present invention is characterized by being provided with a label layer and a temperature-indicating layer laminated above or below the label layer, wherein the temperature-indicating layer includes a substance having at crystallization starting temperature of 10° C. or lower and a melting point at least 20° C. higher than the crystallization starting temperature.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: April 27, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Sukekazu Aratani, Hiroshi Sasaki, Toyotaka Yuasa, Kohhei Aida, Yasuhiko Tada, Masahiro Kawasaki
  • Patent number: 10983013
    Abstract: The present invention addresses the problem of providing a temperature sensing body capable of sensing both a temperature increase and a temperature decrease, and having an anti-tampering function. In order to solve said problem, this temperature sensing body is characterized by including: a first ink in which a temperature Ta1 for initiating color disappearance when the temperature rises and a temperature Td1 for initiating color development when the temperature falls are different; and a second ink in which a temperature Ta2 for initiating color disappearance when the temperature rises and a temperature Td2 for initiating color development when the temperature falls are different, wherein the temperature Ta1 for initiating color disappearance, the temperature Td1 for initiating color development, the temperature Ta2 for initiating color disappearance, and the temperature Td2 for initiating color development have the relationship, Td1<Td2<Ta1<Ta2.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: April 20, 2021
    Assignee: HITACHI, LTD.
    Inventors: Yasuhiko Tada, Masahiro Kawasaki, Kohhei Aida, Hiroshi Sasaki, Toyotaka Yuasa, Hiroyuki Kagawa
  • Patent number: 10677660
    Abstract: The purpose of the present invention is to provide a temperature traceable indicator capable not only of displaying temperature history, but also adding other additional information. To that end, a temperature traceable indicator according to the present invention is provided with a base material and a temperature indicating laminate disposed on the base material, and is characterized in that the temperature indicating laminate is provided with a coloring layer including a color former, a color developing layer including a color developer for inducing the coloration of the color former, and a barrier layer disposed between the coloring layer and color developing layer, and the barrier layer includes a barrier agent that is immiscible with the color developer, is frozen at a first temperature, and melts beyond a second temperature so as to allow the color developer to become diffused in the coloring layer so that color is produced.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: June 9, 2020
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Toyotaka Yuasa, Hiroyuki Kagawa, Hiroshi Sasaki, Kenichi Souma
  • Publication number: 20180306649
    Abstract: The present invention addresses the problem of providing a temperature sensing body capable of sensing both a temperature increase and a temperature decrease, and having an anti-tampering function. In order to solve said problem, this temperature sensing body is characterized by including: a first ink in which a temperature Ta1 for initiating color disappearance when the temperature rises and a temperature Td1 for initiating color development when the temperature falls are different; and a second ink in which a temperature Ta2 for initiating color disappearance when the temperature rises and a temperature Td2 for initiating color development when the temperature falls are different, wherein the temperature Ta1 for initiating color disappearance, the temperature Td1 for initiating color development, the temperature Ta2 for initiating color disappearance, and the temperature Td2 for initiating color development have the relationship, Td1<Td2<Ta1<Ta2.
    Type: Application
    Filed: October 21, 2015
    Publication date: October 25, 2018
    Applicant: HITACHI, LTD.
    Inventors: Yasuhiko TADA, Masahiro KAWASAKI, Kohhei AIDA, Hiroshi SASAKI, Toyotaka YUASA, Hiroyuki KAGAWA
  • Publication number: 20180217114
    Abstract: A purpose of the present invention is to provide a temperature history indicator that allows for visual confirmation of whether the temperature is at or below a prescribed temperature as well as simple conversion of this information into data. A temperature history indicator according to the present invention is characterized by being provided with a label layer and a temperature-indicating layer laminated above or below the label layer, wherein the temperature-indicating layer includes a substance having at crystallization starting temperature of 10° C. or lower and a melting point at least 20° C. higher than the crystallization starting temperature.
    Type: Application
    Filed: July 22, 2016
    Publication date: August 2, 2018
    Inventors: Sukekazu ARATANI, Hiroshi SASAKI, Toyotaka YUASA, Kohhei AIDA, Yasuhiko TADA, Masahiro KAWASAKI
  • Publication number: 20180045582
    Abstract: The purpose of the present invention is to provide a temperature traceable indicator capable not only of displaying temperature history, but also adding other additional information. To that end, a temperature traceable indicator according to the present invention is provided with a base material and a temperature indicating laminate disposed on the base material, and is characterized in that the temperature indicating laminate is provided with a coloring layer including a color former, a color developing layer including a color developer for inducing the coloration of the color former, and a barrier layer disposed between the coloring layer and color developing layer, and the barrier layer includes a barrier agent that is immiscible with the color developer, is frozen at a first temperature, and melts beyond a second temperature so as to allow the color developer to become diffused in the coloring layer so that color is produced.
    Type: Application
    Filed: January 29, 2016
    Publication date: February 15, 2018
    Inventors: Toyotaka YUASA, Hiroyuki KAGAWA, Hiroshi SASAKI, Kenichi SOUMA
  • Publication number: 20180018626
    Abstract: The purpose of the present invention is to provide a system which, in a product delivery procedure, monitors and manages, more simply and reliably, a deviation from a managed temperature during shipment. To solve the problem, provided is a logistics system, comprising: an information reading and transmitting device which reads an information code which is provided on a product and transmits data which is included in the information code; a server which accumulates, via a communications network, the data which is transmitted from the information reading and transmitting device; and a terminal device which refers to the data which is accumulated in the server via the communications network. The information code is formed from a pattern which changes with an occurrence of a deviation from a specified temperature. The system employs the information code.
    Type: Application
    Filed: February 5, 2016
    Publication date: January 18, 2018
    Inventors: Hiroyuki KAGAWA, Hiroshi SASAKI, Toyotaka YUASA, Kenichi SOUMA
  • Publication number: 20160254542
    Abstract: The objective of the present invention is to provide a lithium ion secondary battery, the charged state of which can be detected from the battery voltage with high accuracy, and which is able to achieve a high capacity in a high-potential range. This objective can be achieved by a cathode active material for lithium ion secondary batteries, which is composed of a lithium transition metal oxide containing Li and metal elements including at least Ni and Mn, and which is characterized in that: the atomic ratio of Li to the metal elements satisfies 1.15<Lil(metal elements)<1.5; the atomic ratio of Ni to Mn satisfies 0.334<Ni/Mn?1; and the atomic ratio of Ni and Mn to the metal elements satisfies 0.975?(Ni+Mn)/(metal elements)?1.
    Type: Application
    Filed: October 23, 2013
    Publication date: September 1, 2016
    Inventors: Hiroaki KONISHI, Akira GUNJI, Tatsuya TOYAMA, Xiaoliang FENG, Sho FURUTSUKI, Toyotaka YUASA, Mitsuru KOBAYASHI, Hisato TOKORO, Shuichi TAKANO, Takashi NAKABAYASHI
  • Patent number: 9224512
    Abstract: A positive electrode active material for a non-aqueous secondary battery having high capacity and high rate characteristics is intended to be provided. Further, a positive electrode for a non-aqueous secondary battery and a non-aqueous secondary battery are intended to be provided by using the positive electrode active material. The positive electrode active material for the non-aqueous secondary battery contains a lithium composite oxide having an olivine structure represented by the chemical formula: Li1+AMnXM1?X(PO4)1+B in which A>0, B>0, M represents a metal element, M in the chemical formula is one or more metal elements selected from Fe, Ni, Co, Ti, Cu, Zn, Mg, V, and Zr, the ratio A/B in the chemical formula is within a range of: 2<A/B?7, and the value of X is within a range of: 0.3?X<1.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: December 29, 2015
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi, Kan Kitagawa, Toyotaka Yuasa, Shuichi Takano, Mitsuru Kobayashi
  • Publication number: 20150188139
    Abstract: Provided is a positive electrode active material for lithium secondary batteries, which uses a highly safe polyanion compound and has high capacity, high rate characteristics and high energy density. A positive electrode active material for lithium secondary batteries, which contains polyanion compound particles coated with carbon. This positive electrode active material for lithium secondary batteries is characterized in that: the polyanion compound has a structure represented by chemical formula (1); the roughness factor of the polyanion compound, said roughness factor being represented by formula (1), is 1-2; and the average primary particle diameter of the polyanion compound is 10-150 nm. LixMAyOz (chemical formula (1)) (In chemical formula (1), M comprises at least one transition metal element; A represents a typical element that combines with oxygen (O) and forms an anion; 0<x?2, 1?y?2 and 3?z?7.
    Type: Application
    Filed: July 25, 2013
    Publication date: July 2, 2015
    Inventors: Kan Kitagawa, Shuichi Takano, Toyotaka Yuasa, Shin Takahashi, Takashi Nakabayashi, Mitsuru Kobayashi
  • Publication number: 20150140431
    Abstract: A method for producing a positive electrode active material for nonaqueous secondary batteries, the positive electrode active material using a polyanionic active material. The method includes the steps of mixing raw materials of the positive electrode active material with each other, pre-calcining the mixed raw materials in an oxidizing atmosphere at a temperature ranging from 400 to 600° C. both inclusive, mixing carbon or an organic substance with a pre-calcinated material yielded through the pre-calcining step, and the step of calcining the pre-calcinated material, with which the carbon or the organic substance is mixed in a reducing atmosphere or an inert atmosphere.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 21, 2015
    Inventors: Kan Kitagawa, Toyotaka Yuasa
  • Patent number: 8974971
    Abstract: A positive electrode for a rechargeable lithium ion battery includes a mixture layer including a positive-electrode active material, a conducting agent, and a binder and a collector having the mixture layer formed on the surface thereof. The positive-electrode active material is a composite oxide having an olivine structure expressed by a formula LiaMxPO4 (where M represents a transition metal including at least one of Fe and Mn and a and x satisfy 0<a?1.1 and 0.9?x?1.1). The conducting agent includes fibrous carbon. A carbon coating layer is formed on the surface of the collector. A part of the positive-electrode active material and a part of the fibrous carbon enter pits formed in the carbon coating layer.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 10, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Toyotaka Yuasa, Mitsuru Kobayashi, Sai Ogawa, Masanari Oda, Kan Kitagawa
  • Patent number: 8900753
    Abstract: A cathode material with excellent capacity and output characteristics and safety, and a lithium ion secondary battery using the same is provided. The invention relates to a cathode material which includes a mixture of a cathode active material having a large primary particle size with excellent capacity characteristics and represented by the composition formula: Lix1Nia1Mnb1Coc1O2, where 0.2?x1?1.2, 0.6?a1, 0.05?b1?0.3, 0.05?c1?0.3, and another cathode active material having a small primary particle size with excellent output characteristics and represented by the composition formula: Lix2Nia2Mnb2Coc2O2, where 0.2?x2?1.2, a2?0.5, 0.05?b2?0.5, 0.05?c2?0.5. The invention also relates to a lithium ion secondary battery using the cathode material.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: December 2, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hiroaki Konishi, Toyotaka Yuasa, Mitsuru Kobayashi
  • Publication number: 20140209832
    Abstract: A positive electrode active material for a non-aqueous secondary battery having high capacity and high rate characteristics is intended to be provided. Further, a positive electrode for a non-aqueous secondary battery and a non-aqueous secondary battery are intended to be provided by using the positive electrode active material. The positive electrode active material for the non-aqueous secondary battery contains a lithium composite oxide having an olivine structure represented by the chemical formula: Li1+AMnXM1?X(PO4)1+B in which A>0, B>0, M represents a metal element, M in the chemical formula is one or more metal elements selected from Fe, Ni, Co, Ti, Cu, Zn, Mg, V, and Zr, the ratio A/B in the chemical formula is within a range of: 2<A/B?7, and the value of X is within a range of: 0.3?X<1.
    Type: Application
    Filed: January 29, 2014
    Publication date: July 31, 2014
    Applicant: Hitachi Metals, Ltd.
    Inventors: Takashi NAKABAYASHI, Shin TAKAHASHI, Kan KITAGAWA, Toyotaka YUASA, Shuichi TAKANO, Mitsuru KOBAYASHI
  • Patent number: 8758941
    Abstract: This invention provides a positive electrode material having high capacity and safety, and a lithium ion secondary battery using the positive electrode material, the lithium ion secondary battery using a positive electrode active substance comprising a first transition metal oxide represented by the compositional formula: Lix1Nia1Mnb1Coc1Md1O2; a second transition metal oxide represented by the compositional formula: Lix2Nia2Mnb2Coc2Md2O2; and a third transition metal oxide represented by the compositional formula: Lix3Nia3Mnb3Coc3Md3O2; in which a3<a2<a1.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: June 24, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hiroaki Konishi, Toyotaka Yuasa
  • Patent number: 8709656
    Abstract: A lithium ion secondary battery according to the present invention uses a cathode material obtained by mixing a first cathode active substance represented by a compositional formula: Lix1Nia1Mnb1COc1O2 (in which 0.2?x1?1.2, 0.6?a1?0.9, 0.05?b1?0.3, 0.05?c1?0.3, and a1+b1+c1=1.0); and a second cathode active substance represented by a compositional formula: Lix2Nia2Mnb2COc2MdO2 (in which 0.2?x2?1.2, 0.7?a2?0.9, 0.05?b2?0.3, 0.05?c2?0.3, M=Mo, W, 0?d?0.06, and a2+b2+c2+d=1.0).
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: April 29, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hiroaki Konishi, Toyotaka Yuasa
  • Patent number: 8530087
    Abstract: It is an object to provide a cathode for a secondary lithium battery in which adhesiveness and flexibility thereof are simultaneously achieved and the thickness thereof is made large, and the secondary lithium ion battery that has a large capacity and is excellent in safety and cycle life using the cathode. The cathode includes a current collector and a cathode mixture layer formed on the surface of the current collector. The cathode mixture layer is formed by stacking two layers one on another, each of which contains a cathode active material, a conductive material and a binder, and the cathode active material contains a lithium-containing composite oxide that forms a polyanion.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: September 10, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Kan Kitagawa, Toyotaka Yuasa, Tatsuya Tooyama
  • Publication number: 20130071722
    Abstract: A positive electrode for a rechargeable lithium ion battery includes a mixture layer including a positive-electrode active material, a conducting agent, and a binder and a collector having the mixture layer formed on the surface thereof. The positive-electrode active material is a composite oxide having an olivine structure expressed by a formula LiaMxPO4 (where M represents a transition metal including at least one of Fe and Mn and a and x satisfy 0<a?1.1 and 0.9?x?1.1). The conducting agent includes fibrous carbon. A carbon coating layer is formed on the surface of the collector. A part of the positive-electrode active material and a part of the fibrous carbon enter pits formed in the carbon coating layer.
    Type: Application
    Filed: July 30, 2012
    Publication date: March 21, 2013
    Applicant: HITACHI, LTD.
    Inventors: Toyotaka Yuasa, Mitsuru Kobayashi, Sai Ogawa, Masanari Oda, Kan Kitagawa
  • Publication number: 20120301780
    Abstract: A positive electrode active material for a lithium ion battery includes a material represented by chemical formula LiMPO4 where M includes at least one of iron, manganese, cobalt, and nickel. Particles of the positive electrode active material have a diameter d in the range of 10 nm to 200 nm, the diameter d being determined by observation under a transmission electron microscope. A ratio d/D of the diameter d to a crystallite diameter D is in the range of 1 to 1.35, the crystallite diameter D being determined from a half width measured by X-ray diffraction. The positive electrode active material is coated with carbon, an amount of the carbon being in the range of 1 weight percent to 10 weight percent.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 29, 2012
    Inventors: Kan KITAGAWA, Toyotaka Yuasa