Patents by Inventor Travis Rowe

Travis Rowe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190060092
    Abstract: A prosthesis includes a first wire bent into a first waveform and spirally wrapped into a first helix having a plurality of windings that form a hollow cylindrical shape and a second wire bent into a second waveform and spirally wrapped into a second helix having a plurality of windings that form a hollow cylindrical shape. The first and second wires are disposed relative to each other such that the plurality of windings of the first wire and the plurality of windings of the second wire are disposed about a common longitudinal axis and the plurality of windings of the first wire and the plurality of windings of the second wire are axially offset from each other, with windings of the plurality of windings of the first wire alternating or interwoven between windings of the plurality of windings of the second wire along a length of the prosthesis.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Travis Rowe, Gustaf Belt
  • Patent number: 10143554
    Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: December 4, 2018
    Assignee: Medtronic Vascular, Inc.
    Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
  • Publication number: 20180289518
    Abstract: In accordance with one embodiment, a helical anchor is provided in a relaxed state. During deployment, a distal portion of the helical anchor is superelastically deformed to protrude longitudinally. The longitudinally protruding distal portion of the helical anchor is longitudinally advanced to cause the distal portion to pierce a prosthesis and a vessel wall. The distal portion returns to the relaxed state after passing through the prosthesis and the vessel wall. By superelastically deforming the distal portion during deployment, it is easier to cause the anchor to penetrate the prosthesis and the vessel wall. Further, by having the anchor return to its relaxed state after passing through the prosthesis and vessel wall, better clamping of the prosthesis to the vessel wall is achieved.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 11, 2018
    Inventor: Travis Rowe
  • Publication number: 20170156863
    Abstract: A venous valve prosthesis includes a frame and a prosthetic valve coupled to the frame. With the venous valve prosthesis implanted in a vein, the prosthetic valve includes a closed configuration wherein an outer surface of the prosthetic valve is in contact with a wall of the vein around a circumference of the prosthetic valve to prevent blood from flowing past the prosthetic valve between the wall of the vein and the outer surface of the prosthetic valve. The prosthetic valve is configured to move to an open configuration such that at least a portion of an outer wall of the prosthetic valve partially collapses away from the wall of the vein in response to antegrade blood flow through the vein to enable blood flow between the outer surface of the prosthetic valve and the wall of the vein.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 8, 2017
    Inventors: Jeffery Argentine, Todd Malsbary, Keith Perkins, Travis Rowe
  • Patent number: 8998975
    Abstract: A helical stent includes a central segment having a first tubular waveform and a first end segment having a second tubular waveform. The waveforms are defined by a plurality of struts and a plurality of crowns connecting adjacent struts together. The struts of the second tubular waveform have different lengths such that second tubular waveform includes a plurality of amplitudes. The second tubular waveform comprises a complete turn around a longitudinal axis of the stent. A first connector connects together the first tubular waveform first end, the second tubular waveform first end, and the second tubular waveform second end. Due to the configuration of the second tubular waveform of the first end segment, the stent end at the first end segment is substantially orthogonal to the longitudinal axis of the stent. A second end segment similar to the first end segment can be connected to a second end of the first tubular waveform.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: April 7, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventor: Travis Rowe
  • Publication number: 20140135904
    Abstract: A helical stent includes a central segment having a first tubular waveform and a first end segment having a second tubular waveform. The waveforms are defined by a plurality of struts and a plurality of crowns connecting adjacent struts together. The struts of the second tubular waveform have different lengths such that second tubular waveform includes a plurality of amplitudes. The second tubular waveform comprises a complete turn around a longitudinal axis of the stent. A first connector connects together the first tubular waveform first end, the second tubular waveform first end, and the second tubular waveform second end. Due to the configuration of the second tubular waveform of the first end segment, the stent end at the first end segment is substantially orthogonal to the longitudinal axis of the stent. A second end segment similar to the first end segment can be connected to a second end of the first tubular waveform.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Applicant: MEDTRONIC VASCULAR, INC.
    Inventor: Travis Rowe
  • Patent number: 8632579
    Abstract: Systems for delivering a bifurcated stent to a bifurcation site include catheters and/or bifurcated systems delivered therefrom. A catheter includes a balloon with a bulge region that allows a portion of the stent to be expanded.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: January 21, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral Maron, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Jr., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
  • Publication number: 20110270339
    Abstract: Systems and methods of delivering and retaining a leadless medical implant to tissue, wherein a docking base and the implant are sequentially delivered to an implantation site. In a first stage, the docking base is delivered and deployed into tissue at an implantation site. In a second stage, the implant is navigated through the vasculature and coupled to the docking base. Various mechanisms for navigating the implant to the previously implanted docking base and coupling the implant thereto are described. Navigational mechanisms include advancing the implant over a proximally extending wire portion that is releasably attached to the previously implanted docking base, utilizing fluoroscopic visualization to guide the implant to a previously implanted docking base that is at least partially radiopaque and utilizing electromagnetism to guide the implant to a previously implanted docking base that is electro-magnetizable.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: Medtronic Vascular, Inc.
    Inventors: Robert Murray, III, Gianfranco Pellegrini, Susan Rea Peterson, Travis Rowe, Erik Griswold, Scott Doig, John Kantor
  • Publication number: 20110270340
    Abstract: Systems and methods of delivering and retaining a leadless medical implant to tissue, wherein a docking base and the implant are sequentially delivered to an implantation site. In a first stage, the docking base is delivered and deployed into tissue at an implantation site. In a second stage, the implant is navigated through the vasculature and coupled to the docking base. Various mechanisms for navigating the implant to the previously implanted docking base and coupling the implant thereto are described. Navigational mechanisms include advancing the implant over a proximally extending wire portion that is releasably attached to the previously implanted docking base, utilizing fluoroscopic visualization to guide the implant to a previously implanted docking base that is at least partially radiopaque and utilizing electromagnetism to guide the implant to a previously implanted docking base that is electro-magnetizable.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicant: Medtronic Vascular,Inc.
    Inventors: Gianfranco Pellegrini, Susan Rea Peterson, Travis Rowe, Arvind Srinivas, Scott Doig, Barry Wohl
  • Publication number: 20110004287
    Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.
    Type: Application
    Filed: September 15, 2010
    Publication date: January 6, 2011
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, JR., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
  • Patent number: 7799064
    Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: September 21, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Jr., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
  • Patent number: 7758634
    Abstract: A bifurcated stent includes a first stent section and a second stent section. The first stent section is balloon expandable, has an unexpanded configuration, an expanded configuration, and a tubular wall defining a secondary opening. The secondary stent section is self-expanding and an end of the secondary stent section is engaged to a portion of the tubular wall of the primary stent section defining the secondary opening. The secondary stent section has an unexpanded configuration with a first length and an expanded configuration with a second length where the first length is less than the second length. The secondary stent section is expanded to the expanded configuration after the primary stent section is expanded to the expanded configuration. The secondary stent section forms a portion of the tubular wall of the primary stent section in the unexpanded configuration.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: July 20, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Simon Furnish, Michael A. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Thomas Banks, Russ Redmond, Claude Vidal
  • Publication number: 20070168020
    Abstract: A bifurcated stent includes a first stent section and a second stent section. The first stent section is balloon expandable, has an unexpanded configuration, an expanded configuration, and a tubular wall defining a secondary opening. The secondary stent section is self-expanding and an end of the secondary stent section is engaged to a portion of the tubular wall of the primary stent section defining the secondary opening. The secondary stent section has an unexpanded configuration with a first length and an expanded configuration with a second length where the first length is less than the second length. The secondary stent section is expanded to the expanded configuration after the primary stent section is expanded to the expanded configuration. The secondary stent section forms a portion of the tubular wall of the primary stent section in the unexpanded configuration.
    Type: Application
    Filed: March 21, 2007
    Publication date: July 19, 2007
    Inventors: Gregory Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava Chernomordik, William Mers Kelly, William Reuss, Simon Furnish, Michael Wilson, Hacene Bouadi, John Muskivitch, Matthew Pease, David Rahdert, Travis Rowe, Gregory Ruhf, Brandon Walsh, Claude Vidal, Thomas Banks, Russ Redmond
  • Publication number: 20050119731
    Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.
    Type: Application
    Filed: January 3, 2005
    Publication date: June 2, 2005
    Inventors: Gregory Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava Chernomordik, William MersKelly, William Reuss, Simon Furnish, Michael Wilson, Hacene Bouadi, John Muskivitch, Mathew Pease, David Rahdert, Travis Rowe, Gregory Ruhf, Brandon Walsh, Thomas Banks, Russ Redmonds, Claude Vidal
  • Patent number: 6695877
    Abstract: A bifurcated stent comprises a first stent section and a second stent section. Each stent section is expandable from a predeployed state to a deployed state independently from one another. The second stent section having an end engaged to a receiving region of the first stent section. In the deployed state the first stent section defines a primary flow path and the second stent section defines a secondary flow path in fluid communication with the first flow path. At least a portion of one or both the first stent section and second stent section is constructed from a wire member.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: February 24, 2004
    Assignee: SciMed Life Systems
    Inventors: Gregory G. Brucker, Todd Hall, Enrique Malaret, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Jr., Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude Vidal, Thomas Banks, Russ Redmond
  • Publication number: 20040024463
    Abstract: Expandable implants for repair of a defect in an intervertebral disc or in a cancellous bone fracture, and methods and apparatuses for delivering the same into the defect. The implants [generally comprise a compressed form having a size adapted for insertion into the defect, and a composition that allows the implant to expand from the compressed form into an expanded form after the implant is inserted into the defect. The expanded form of the implant has a configuration that fills the defect. The composition used to make the implant can include a shape memory alloy (SMA), Elasthane™ polyetherurethane, or any other suitable material. Further, multiple implants can be used to repair a single defect. The implants can be inserted into the defect by various types of insertion devices, including a needle that provides for percutaneous delivery.
    Type: Application
    Filed: April 18, 2003
    Publication date: February 5, 2004
    Inventors: James C. Thomas, David C. Forster, Gregory M. Mast, Travis Rowe
  • Publication number: 20030097169
    Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.
    Type: Application
    Filed: February 26, 2002
    Publication date: May 22, 2003
    Inventors: Gregory G. Brucker, Enrique Malaret, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral Maron, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh, Claude A. Vidal, Thomas Banks, Russ J. Redmond
  • Publication number: 20030074075
    Abstract: Expandable implants for intervertebral disc repair, and methods and apparatuses for delivering the same into the disc. The present implants can also be used for repair of bone fractures. The implants generally comprise a compressed form having a size adapted for insertion into a defect in the intervertebral disc, and a composition that allows the implant to expand from the compressed form into an expanded form after the implant is inserted into the defect. The expanded form of the implant has a configuration that fills the defect in the disc. The defect in the disc can be an annular defect that resulted from repair of a herniation of the disc, or a nucleus that needs to be repaired. The composition used to make the implant can comprise a shape memory alloy (SMA) or any other suitable material.
    Type: Application
    Filed: August 27, 2002
    Publication date: April 17, 2003
    Inventors: James C. Thomas, David C. Forster, Gregory M. Mast, Travis Rowe
  • Publication number: 20030055495
    Abstract: Expandable heart valves for minimally invasive valve replacement surgeries are disclosed. The valves are rolled into a first, contracted configuration for minimally invasive delivery using a catheter, and then unrolled or unfurled at the implantation site. One- and two-piece stents may be used in conjunction with a plurality of flexible leaflet-forming membranes. The stents may include an annulus section, a sinus section with the membranes attached over sinus apertures, and an outflow section. Lockout tabs and making slots secure the stents in their expanded shapes. Alignment structure ensures concentric unfurling of the stent. Anchoring elements at the stent edges or in the stent body secure the valve within the annulus. A method of manufacture includes shape setting the sheet-like stent to ensure an outward bias during deployment. The stent may also include dear tracks for engagement with a gear mechanism for deployment.
    Type: Application
    Filed: November 1, 2002
    Publication date: March 20, 2003
    Inventors: Matthew L. Pease, Brandon G. Walsh, Jibin Yang, Travis Rowe, Gregory Martin Mast, Tyson Gustus, David Forster, John C. Muskivitch
  • Publication number: 20020193873
    Abstract: Systems for delivering a bifurcated stent to a bifurcation site comprise catheters and/or bifurcated stents delivered therefrom.
    Type: Application
    Filed: February 26, 2002
    Publication date: December 19, 2002
    Inventors: Gregory G. Brucker, Enrique Malaret, Thomas Banks, Russ J. Redmond, Claude A. Vidal, Todd Hall, David Byrd, Gerald Hubbs, Gregory Furnish, Josh Barber, Indaka Gunasekara, Benjamin Morris, Valerie Futral, Sava A. Chernomordik, William C. Mers Kelly, William A. Reuss, Simon Furnish, Michael W. Wilson, Hacene Bouadi, John C. Muskivitch, Matthew L. Pease, David A. Rahdert, Travis Rowe, Gregory M. Ruhf, Brandon G. Walsh