Patents by Inventor Trevor Edward Wilantewicz

Trevor Edward Wilantewicz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963320
    Abstract: Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about ?0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about ?200 MPa/micrometer to about ?25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: April 16, 2024
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Xiaoju Guo, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Trevor Edward Wilantewicz
  • Publication number: 20230348290
    Abstract: Described herein is a plasma resistant protective coating composition and bulk composition that provides enhanced erosion and corrosion resistance upon the coating composition's or the bulk composition's exposure to harsh chemical environment (such as hydrogen based and/or halogen based chemistries) and/or upon the coating composition's or the bulk composition's exposure to high energy plasma. Also described herein is a method of coating an article with a plasma resistant protective coating using electronic beam ion assisted deposition, physical vapor deposition, or plasma spray. Also described herein is a method of processing wafer, which method exhibits a reduced number of yttrium based particles.
    Type: Application
    Filed: June 30, 2023
    Publication date: November 2, 2023
    Inventors: Christopher Laurent Beaudry, Vahid Firouzdor, Joseph Frederick Sommers, Trevor Edward Wilantewicz, Hyun-Ho Doh, Joseph Frederick Behnke
  • Patent number: 11724965
    Abstract: Glass-based articles have a first surface and a second surface opposing the first surface defining a thickness (t) and a center between the first surface and the second surface, the glass-based article containing Li2O, ion-exchanged potassium and ion-exchanged sodium. The glass-based article has a stress profile including a hump stress region extending from the first surface (or a point below the first surface) to an apex in a range of 0.001·t and 0.1·t. Compressive stress at the apex is from 25 to 750 MPa. The hump region comprises an area of increasing stress and an area of decreasing stress. Depth of compression is from 0.1·t to 0.25·t. A tensile stress region extends from the depth of compression to a maximum tensile stress.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: August 15, 2023
    Assignee: Corning Incorporated
    Inventors: Vitor Marino Schneider, Trevor Edward Wilantewicz
  • Publication number: 20230057346
    Abstract: Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about ?0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about ?200 MPa/micrometer to about ?25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 23, 2023
    Inventors: Timothy Michael Gross, Xiaoju Guo, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Trevor Edward Wilantewicz
  • Publication number: 20210403337
    Abstract: Described herein is a plasma resistant protective coating composition and bulk composition that provides enhanced erosion and corrosion resistance upon the coating composition's or the bulk composition's exposure to harsh chemical environment (such as hydrogen based and/or halogen based chemistries) and/or upon the coating composition's or the bulk composition's exposure to high energy plasma. Also described herein is a method of coating an article with a plasma resistant protective coating using electronic beam ion assisted deposition, physical vapor deposition, or plasma spray. Also described herein is a method of processing wafer, which method exhibits a reduced number of yttrium based particles.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 30, 2021
    Inventors: Christopher Laurent Beaudry, Vahid Firouzdor, Joseph Frederick Sommers, Trevor Edward Wilantewicz, Hyun-Ho Doh, Joseph Frederick Behnke
  • Publication number: 20210047237
    Abstract: Glass-based articles have a first surface and a second surface opposing the first surface defining a thickness (t) and a center between the first surface and the second surface, the glass-based article containing Li2O, ion-exchanged potassium and ion-exchanged sodium. The glass-based article has a stress profile including a hump stress region extending from the first surface (or a point below the first surface) to an apex in a range of 0.001·t and 0.1t. Compressive stress at the apex is from 25 to 750 MPa. The hump region comprises an area of increasing stress and an area of decreasing stress. Depth of compression is from 0.1·t to 0.25·t. A tensile stress region extends from the depth of compression to a maximum tensile stress.
    Type: Application
    Filed: January 23, 2019
    Publication date: February 18, 2021
    Inventors: VITOR MARINO SCHNEIDER, TREVOR EDWARD WILANTEWICZ
  • Patent number: 10612129
    Abstract: Provided herein are ion-implanted glass based articles with improved flaw suppression properties. The ion-implanted glass based articles generally have a final indent fracture threshold (IFT) load of at least 650 grams, and/or a scratch threshold force of at least 10 N, which represents at least 1.25-fold enhancement compared to the glass based article prior to ion-implantation. Factors affecting the efficacy of the ion implantation process can include the IFT load of the starting glass or glass ceramic substrate (native IFT load), ion type, ion dose, implant energy, beam current, and glass temperature.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 7, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Sarko Cherekdjian, Benedict Osobomen Egboiyi, William Brashear Mattingly, III, Michael Yoshiya Nishimoto, Toshihiko Ono, Prakash Chandra Panda, Trevor Edward Wilantewicz
  • Publication number: 20190208652
    Abstract: Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about ?0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about ?200 MPa/micrometer to about ?25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.
    Type: Application
    Filed: March 6, 2019
    Publication date: July 4, 2019
    Inventors: Timothy Michael Gross, Xiaoju Guo, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Trevor Edward Wilantewicz
  • Patent number: 10271442
    Abstract: Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about ?0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about ?200 MPa/micrometer to about ?25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: April 23, 2019
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Xiaoju Guo, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Trevor Edward Wilantewicz
  • Publication number: 20170369989
    Abstract: Provided herein are ion-implanted glass based articles with improved flaw suppression properties. The ion-implanted glass based articles generally have a final indent fracture threshold (IFT) load of at least 650 grams, and/or a scratch threshold force of at least 10 N, which represents at least 1.25-fold enhancement compared to the glass based article prior to ion-implantation. Factors affecting the efficacy of the ion implantation process can include the IFT load of the starting glass or glass ceramic substrate (native IFT load), ion type, ion dose, implant energy, beam current, and glass temperature.
    Type: Application
    Filed: June 22, 2017
    Publication date: December 28, 2017
    Inventors: Sarko Cherekdjian, Benedict Osobomen Egboiyi, William Brashear Mattingly, III, Michael Yoshiya Nishimoto, Toshihiko Ono, Parkash Chandra Panda, Trevor Edward Wilantewicz
  • Publication number: 20170295657
    Abstract: Glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t), and a stress profile are disclosed having a thickness (t) of about 3 millimeters or less, and wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent with a slope that is less than about ?0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers. Also disclosed are glass-based articles having a thickness (t) in a range of 0.1 mm and 2 mm; and wherein at least one point of the stress profile in a first thickness range from about 0·t up to 0.020·t and greater than 0.98·t comprises a tangent with a slope of from about ?200 MPa/micrometer to about ?25 MPa/micrometer or about 25 MPa/micrometer to about 200 MPa/micrometer, and wherein all points of the stress profile in a second thickness range from about 0.035·t and less than 0.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: Timothy Michael Gross, Xiaoju Guo, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Vitor Marino Schneider, Trevor Edward Wilantewicz