Patents by Inventor Troy R. Hendricks

Troy R. Hendricks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9245671
    Abstract: A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: January 26, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: John T. Simpson, Joseph P. Cunningham, Brian R. D'Urso, Troy R. Hendricks, Daniel A. Schaeffer
  • Patent number: 9023478
    Abstract: Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 5, 2015
    Assignee: Board of Trustees of Michigan State University
    Inventors: Ilsoon Lee, Lawrence T. Drzal, Jue Lu, Troy R. Hendricks
  • Publication number: 20130240242
    Abstract: A method of making a wire array includes the step of providing a tube of a sealing material and having an interior surface, and positioning a wire in the tube, the wire having an exterior surface. The tube is heated to soften the tube, and the softened tube is drawn and collapsed by a mild vacuum to bring the interior surface of the tube into contact with the wire to create a coated wire. The coated wires are bundled. The bundled coated wires are heated under vacuum to fuse the tube material coating the wires and create a fused rod with a wire array embedded therein. The fused rod is cut to form a wire array. A wire array is also disclosed.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: UT-BATTELLE, LLC
    Inventors: John T. SIMPSON, Joseph P. CUNNINGHAM, Brian R. D'URSO, Troy R. HENDRICKS, Daniel A. SCHAEFFER
  • Patent number: 8460782
    Abstract: An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 ?m or less.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: June 11, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Ilia N Ivanov, John T Simpson, Troy R Hendricks
  • Patent number: 8460785
    Abstract: Methods to control and prevent polymer films from buckling are provided. Buckled morphologies are created by thermally cycling or mechanically compressing a substrate such as poly(dimethylsiloxane) (PDMS) coated with a polyelectrolyte multilayer film. By varying the dimensions of the surface topography relative to the buckling wavelength (e.g., pattern size is less than, equal to, and greater than the buckling wavelength) the orientation and the local morphology of the buckled films is controlled. Based on the information obtained, we demonstrate how to alleviate the unavoidable buckling by incorporating nanoparticles into the film. In addition, we studied the effect of the silica layer that results from oxygen plasma treatment and the critical temperature for permanent film buckling.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: June 11, 2013
    Assignee: Board of Trustees of Michigan State University
    Inventors: Ilsoon Lee, Troy R. Hendricks
  • Publication number: 20130009825
    Abstract: Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Ilsoon LEE, Lawrence T. DRZAL, Jue LU, Troy R. HENDRICKS
  • Publication number: 20120321841
    Abstract: An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 ?m or less.
    Type: Application
    Filed: May 16, 2012
    Publication date: December 20, 2012
    Inventors: Ilia N. Ivanov, John T. Simpson, Troy R. Hendricks
  • Patent number: 8202749
    Abstract: An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 ?m or less.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: June 19, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Ilia N. Ivanov, John T. Simpson, Troy R. Hendricks
  • Publication number: 20120135233
    Abstract: An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 ?m or less.
    Type: Application
    Filed: December 18, 2009
    Publication date: May 31, 2012
    Inventors: Ilia N. Ivanov, John T. Simpson, Troy R. Hendricks
  • Publication number: 20100143677
    Abstract: Methods to control and prevent polymer films from buckling are provided. Buckled morphologies are created by thermally cycling or mechanically compressing a substrate such as poly(dimethylsiloxane) (PDMS) coated with a polyelectrolyte multilayer film. By varying the dimensions of the surface topography relative to the buckling wavelength (e.g., pattern size is less than, equal to, and greater than the buckling wavelength) the orientation and the local morphology of the buckled films is controlled. Based on the information obtained, we demonstrate how to alleviate the unavoidable buckling by incorporating nanoparticles into the film. In addition, we studied the effect of the silica layer that results from oxygen plasma treatment and the critical temperature for permanent film buckling.
    Type: Application
    Filed: November 15, 2007
    Publication date: June 10, 2010
    Applicant: Board of Trustees of Michigan State University
    Inventors: Ilsoon Lee, Troy R. Hendricks
  • Publication number: 20100052995
    Abstract: Methods involve a combination of polyelectrolyte multilayer (PEM) coating or silane self assembly on a substrate; microcontact printing; and conductive graphite particles, especially size controlled highly conductive exfoliated graphite nanoplatelets. The conductive graphite particles are coated with a charged polymer such as sulfonated polystyrene. The graphite particles are patterned using microcontact printing and intact pattern transfer on a substrate that has an oppositely-charged surface. The method allows for conductive organic patterning on both flat and curved surfaces and can be used in microelectronic device fabrication.
    Type: Application
    Filed: November 15, 2007
    Publication date: March 4, 2010
    Applicant: Board of Trustees of Michigan State University
    Inventors: Ilsoon Lee, Lawrence T. Drzal, Jue Lu, Troy R. Hendricks