Patents by Inventor Tung-Po Chen

Tung-Po Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090186459
    Abstract: A method of manufacturing a non-volatile memory is provided. A substrate is provided and then a number of stacked gate structures are formed on the substrate. Each of the stacked gate structures includes a tunneling dielectric layer, a floating gate, a first inter-gate dielectric layer, a control gate and a cap layer. A source region is formed in the substrate, and a second inter-gate dielectric layer is formed over the substrate. A number of polysilicon select gates are formed on one side of the stacked gate structures. The select gates connect the stacked gate structures together to form a memory cell column. A spacer is formed on each sidewall of the memory cell column. A drain region is formed in the substrate on one side of the memory cell column. A silicidation process is carried out to convert the polysilicon constituting the select gate into a silicide material.
    Type: Application
    Filed: December 22, 2008
    Publication date: July 23, 2009
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventor: Tung-Po Chen
  • Patent number: 7273787
    Abstract: A method for manufacturing a gate dielectric layer is provided. A substrate divided into at least a high voltage circuit region and a low voltage circuit region is provided. A first dielectric layer serving as gate dielectric layer in the high voltage circuit region is formed on the substrate. A mask layer is formed over the first dielectric layer. The mask layer, the first dielectric layer and the substrate are patterned to form trenches in the substrate. An isolation layer is formed to fill the trenches. The mask layer and part of the isolation layer are removed to expose the surface of the first dielectric layer. The first dielectric layer of the low voltage circuit region is removed to expose the surface of the substrate. A second dielectric layer having a thickness smaller than the first dielectric layer is formed on the substrate in the low voltage circuit region.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: September 25, 2007
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Wen-Ji Chen, Tung-Po Chen, Kai-An Hsueh, Sheng-Hone Zheng
  • Publication number: 20060281251
    Abstract: A method for manufacturing a gate dielectric layer is provided. A substrate divided into at least a high voltage circuit region and a low voltage circuit region is provided. A first dielectric layer serving as gate dielectric layer in the high voltage circuit region is formed on the substrate. A mask layer is formed over the first dielectric layer. The mask layer, the first dielectric layer and the substrate are patterned to form trenches in the substrate. An isolation layer is formed to fill the trenches. The mask layer and part of the isolation layer are removed to expose the surface of the first dielectric layer. The first dielectric layer of the low voltage circuit region is removed to expose the surface of the substrate. A second dielectric layer having a thickness smaller than the first dielectric layer is formed on the substrate in the low voltage circuit region.
    Type: Application
    Filed: November 18, 2005
    Publication date: December 14, 2006
    Inventors: Wen-Ji Chen, Tung-Po Chen, Kai-An Hsueh, Sheng-Hone Zheng
  • Publication number: 20060154418
    Abstract: A method for manufacturing an OTEPROM is described. A tunneling oxide layer, a first conductive layer, a first patterned mask layer are formed on a substrate. A trench is formed in the substrate. An insulating layer is formed to fill the trench. A portion of the first conductive layer destined to form the floating gate is exposed and then a cap layer is formed thereon. The first patterned mask layer is removed and then a second conductive layer and a second patterned mask layer are formed over the substrate. A word line and a floating gate are formed using the second patterned mask layer and the cap layer as a mask. The second patterned mask layer is removed and then source/drain regions are formed in the substrate on both sides of the word line and the floating gate and between the word line and the floating gate.
    Type: Application
    Filed: June 13, 2005
    Publication date: July 13, 2006
    Inventors: Ko-Hsing Chang, Tung-Po Chen, Tung-Ming Lai, Chen-Chiu Hsue
  • Patent number: 7074674
    Abstract: A method for manufacturing an OTEPROM is described. A tunneling oxide layer, a first conductive layer, a first patterned mask layer are formed on a substrate. A trench is formed in the substrate. An insulating layer is formed to fill the trench. A portion of the first conductive layer destined to form the floating gate is exposed and then a cap layer is formed thereon. The first patterned mask layer is removed and then a second conductive layer and a second patterned mask layer are formed over the substrate. A word line and a floating gate are formed using the second patterned mask layer and the cap layer as a mask. The second patterned mask layer is removed and then source/drain regions are formed in the substrate on both sides of the word line and the floating gate and between the word line and the floating gate.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: July 11, 2006
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Ko-Hsing Chang, Tung-Po Chen, Tung-Ming Lai, Chen-Chiu Hsue
  • Publication number: 20060030136
    Abstract: A method of fabrication a gate oxide layer includes providing a substrate and an isolation structure on the substrate so as to isolate an active region. A spacer is formed on the sidewalls of the isolation structure. Using the isolation structure having the spacer as a mask, a dopant is implanted into the substrate for reducing the oxidation rate of the substrate. Thereafter, the spacer and a portion of the isolation structure are removed and an oxidation process is performed to form a gate oxide layer with a uniform thickness over the substrate.
    Type: Application
    Filed: December 14, 2004
    Publication date: February 9, 2006
    Inventor: Tung-Po Chen
  • Publication number: 20060019445
    Abstract: A method of manufacturing a non-volatile memory is provided. A substrate is provided and then a plurality of stacked gate structures is formed on the substrate. Each stacked gate structure includes a tunneling dielectric layer, a floating gate, a first inter-gate dielectric layer, a control gate and a cap layer. A source region is formed in the substrate and then a second inter-gate dielectric layer is formed over the substrate. A plurality of polysilicon select gates is formed on one side of the stacked gate structures. The select gates connect the stacked gate structures together to form a memory cell column. A spacer is formed on each sidewall of the memory cell column. A drain region is formed in the substrate on one side of the memory cell column. A silicidation process is carried out to convert the polysilicon constituting the select gate into silicide material.
    Type: Application
    Filed: March 28, 2005
    Publication date: January 26, 2006
    Inventor: Tung-Po Chen
  • Patent number: 6670249
    Abstract: A process for forming high temperature stable self-aligned suicide layer that not only establishes itself smoothly and uniformly despite the use of a high temperature in the siliciding reaction, but also can withstand other subsequent high temperature thermal processing operations and maintaining a stable metal silicide layer profile thereafter. Moreover, desired thickness and uniformity of the metal suicide layer can be obtained by suitably adjusting the amorphous implant parameters, while the use of a titanium nitride cap layer help to stabilize the metal silicide layer during high temperature formation and that a stable and uniform metal suicide layer profile can be ensured even if subsequent high temperature processing operations are performed.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: December 30, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Hong-Tsz Pan, Tung-Po Chen
  • Publication number: 20030186532
    Abstract: The present invention provides a method to form a titanium-containing glue layer and to reduce the diffusion of boron ion into a titanium-containing glue layer. The primary step is a nitrogen-ion implantation process in which the nitrogen ions are implanted into an interface region between a boron-ion doped region and a titanium-containing glue layer to form a nitrogen-ion-containing doped region. Afterward, a titanium-containing glue layer is conformally deposited on the surface of the nitrogen-ion-containing doped region by a TiCl4-based CVD method. Because the temperature used in the CVD is so high that an ion diffusion occurs in the interface region between the nitrogen-ion-containing doped region and the titanium-containing glue layer, a titanium nitride layer is then formed in the interface region by a contact of the titanium ions and the nitrogen ions. The boron ions can not pass through the nitrogen-ion-containing doped region and the titanium nitride layer into the titanium-containing glue layer.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 2, 2003
    Inventors: Tung-Po Chen, Alan K.L. Cheng, Tony Lin, Ming-Yin Hao
  • Patent number: 6426256
    Abstract: A method for manufacturing an embedded DRAM with self-aligned borderless contacts is provided. The method comprises providing a substrate having a first device region and a second device region. The first device region comprises a first transistor and the second device region has a second transistor. A silicide block layer is formed over the second device region. An etching stop layer covers all device regions. A mask layer covers the first device region. Then the etching stop layer not covered by the mask layer is removed. A first dielectric material layer is formed on all the device regions and therein a first contact window is on the second device region. A second dielectric material layer is next formed and therein a second contact window is on the second device region. A third dielectric material layer is formed and therein at least a third contact window is coupled to the first transistor of the first device region.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: July 30, 2002
    Assignee: United Microelectronics Corp.
    Inventor: Tung-Po Chen
  • Publication number: 20020025678
    Abstract: A method for manufacturing a semiconductor device is disclosed. The method can reduce thermal budget in node contact application. It includes mainly the following processes. A substrate is first provide, then a dielectric layer is formed over the substrate. Next, a node contact opening through the dielectric layer to top surface of the substrate is formed by coating the dielectric layer with a photoresist layer, patterning the photoresist layer with pattern of a node contact by exposure and development, then etching the dielectric layer until top surface of said substrate exposed using said patterned photoresist layer as a mask. Subsequently, the photoresist layer is removed. Finally, a silicon nitride layer is formed on inside wall of the node contact opening by rapid thermal chemical vapor deposition (RTCVD).
    Type: Application
    Filed: July 26, 2001
    Publication date: February 28, 2002
    Applicant: United Microelectronics Corp.
    Inventors: Tung-Po Chen, Yung-Chang Lin
  • Publication number: 20020025676
    Abstract: A method of making a semiconductor device including a MOS transistor provides an insulator formed on a semiconductor substrate and a gate electrode formed on the insulator. Source/drain regions are formed within the substrate on either side of the gate electrode. A layer of titanium is sputtered onto the semiconductor device, and a layer of titanium nitride is direct sputtered over the titanium layer using a titanium nitride target. The device is annealed at a first temperature to form a structure including titanium silicide on the polysilicon electrode, titanium silicide on the surface of the source/drain regions, unreacted titanium over the silicide regions, and titanium nitride over the unreacted metal. The unreacted titanium and titanium nitride are removed from the structure, and the structure is annealed at a higher temperature than the first temperature to form a lower resistivity titanium silicide.
    Type: Application
    Filed: June 7, 2001
    Publication date: February 28, 2002
    Inventors: Tung-Po Chen, Hong-Tsz Pan, Wen-Yi Hsieh
  • Patent number: 6350646
    Abstract: A method for manufacturing a semiconductor device is disclosed. The method can reduce thermal budget in node contact application. It includes mainly the following processes. A substrate is first provided, then a dielectric layer is formed over the substrate. Next, a node contact opening through the dielectric layer to top surface of the substrate is formed by coating the dielectric layer with a photoresist layer, patterning the photoresist layer with pattern of a node contact by exposure and development, then etching the dielectric layer until top surface of said substrate exposed using said patterned photoresist layer as a mask. Subsequently, the photoresist layer is removed. Finally, a silicon nitride layer is formed on inside wall of the node contact opening by rapid thermal chemical vapor deposition (RTCVD).
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: February 26, 2002
    Assignee: United Microelectronics Corp.
    Inventors: Tung-Po Chen, Yung-Chang Lin
  • Patent number: 6316321
    Abstract: A method for forming MOSFET is disclosed. The method includes firstly providing a substrate, on which a gate without spacer is already formed. A first spacer is formed on sidewall of the gate, a lightly doped drain is subsequently formed in the substrate. Next, a second spacer is formed on the first spacer. Finally, a heavily doped drain is formed in the substrate. The present invention can enhance stability of resistance of the gate and reduce pollution of the machine. Therefore, quality and efficiency of the fabrication of MOSFET will be enhanced.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: November 13, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Yung-Chang Lin, Jih-Wen Chou, Tung-Po Chen
  • Patent number: 6316311
    Abstract: A method of forming borderless contacts is provided. A substrate is provided. The substrate has at least a logic region and a memory region. A MOS transistor and a STI structure are formed on the logic region. The MOS transistor comprises a gate, a source/drain region and a cap insulating layer on the gate. An etching stop layer is formed on the substrate to cover the MSO transistor and the STI structure. A dielectric layer is formed in the etching stop layer. The dielectric layer, the etching stop layer and the cap insulating layer are partially removed to form a first opening according to the pattern of a first mask layer. The first opening exposes the gate. According to the pattern of a second mask layer, the dielectric layer and the etching stop layer are partially removed to form openings, which expose the source/drain region, in the dielectric layer.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: November 13, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Tung-Po Chen, Tong-Yu Chen, Keh-Ching Huang, Jacob Chen
  • Patent number: 6297112
    Abstract: The present invention provides a method of forming a PMOS transistor or an NMOS transistor on a semiconductor wafer. The semiconductor wafer comprises a silicon substrate and a gate positioned on a predetermined area of the silicon substrate. First, a protection layer of uniform thickness made of silicon nitride is formed on the semiconductor wafer to cover the surface of the gate. Then, a first ion implantation process is performed to form a first ion implantation layer with a first predetermined thickness on the silicon substrate around the gate. Then, an RCA cleaning process is performed to remove impurities on the semiconductor wafer. Next, a spacer is formed around the gate. Finally, a second ion implantation process is performed to form a second ion implantation layer with a second predetermined thickness on the silicon substrate around the gate. The second ion implantation layer is used as a source or drain (S/D) of the MOS transistor.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: October 2, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Tony Lin, Tung-Po Chen, Ming-Yin Hao
  • Patent number: 6277721
    Abstract: A method of making a semiconductor device including a MOS transistor provides an insulator formed on a semiconductor substrate and a gate electrode formed on the insulator. Source/drain regions are formed within the substrate on either side of the gate electrode. A layer of titanium is sputtered onto the semiconductor device, and a layer of titanium nitride is direct sputtered over the titanium layer using a titanium nitride target. The device is annealed at a first temperature to form a structure including titanium silicide on the polysilicon electrode, titanium silicide on the surface of the source/drain regions, unreacted titanium over the silicide regions, and titanium nitride over the unreacted metal The unreacted titanium and titanium nitride are removed from the structure, and the structure is annealed at a higher temperature than the first temperature to form a lower resistivity titanium silicide.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: August 21, 2001
    Assignee: United Microelectronics Corporation
    Inventors: Tung-Po Chen, Hong-Tsz Pan, Wen-Yi Hsieh
  • Publication number: 20010010962
    Abstract: A method of fabricating a field effect transistor, wherein a substrate with a gate is provided. A liner oxide layer and a first spacer are formed adjacent to the sides of the gate. An epitaxial silicon layer is formed at both sides of the gate in the substrate, while a shallow source/drain (S/D) extension junction is formed in the substrate below the epitaxial silicon layer. An oxide layer and a second spacer are formed to be closely connected to the first spacer and form the S/D region below the epitaxial silicon layer. A part of the epitaxial silicon layer is then transformed into a metal silicide layer, so as to complete the process of the field effect transistor.
    Type: Application
    Filed: March 30, 2001
    Publication date: August 2, 2001
    Inventors: Tung-Po Chen, Jih-Wen Chou
  • Patent number: 6255152
    Abstract: A method of fabricating a CMOS transistor using Si—B layer to form a source/drain extension junction is disclosed. The fabrication includes the steps as follows; First, a p-type semiconductor substrate and an n-well region are provided. Afterwards, a shallow trench isolation (STI) is formed into the p-type semiconductor substrate and the n-well region, thereby forming a plurality of active regions therebetween. A channel is formed into the p-type semiconductor substrate and the n-well region. Then, a PMOSFET gate pattern and an NMOSFET gate pattern are formed over the p-type semiconductor substrate and the n-well region. A first defined photoresist layer is formed over the n-well region. Afterwards, the n−-type dopant is implanted into the p-type semiconductor substrate to form an n−-type lightly doped source/drain. Then the first defined photoresist layer is removed. A first dielectric layer is deposited over the p-type semiconductor substrate and the n-well region.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: July 3, 2001
    Assignee: United Microelectronics Corp.
    Inventor: Tung-Po Chen
  • Patent number: 6228730
    Abstract: A method of fabricating a field effect transistor, wherein a substrate with a gate is provided. A liner oxide layer and a first spacer are formed adjacent to the sides of the gate. An epitaxial silicon layer is formed at both sides of the gate in the substrate, while a shallow source/drain (S/D) extension junction is formed in the substrate below the epitaxial silicon layer. An oxide layer and a second spacer are formed to be closely connected to the first spacer and form the S/D region below the epitaxial silicon layer. A part of the epitaxial silicon layer is then transformed into a metal silicide layer, so as to complete the process of the field effect transistor.
    Type: Grant
    Filed: April 28, 1999
    Date of Patent: May 8, 2001
    Assignee: United Microelectronics Corp.
    Inventors: Tung-Po Chen, Jih-Wen Chou