Patents by Inventor Tzu Cheng Lin

Tzu Cheng Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8445296
    Abstract: Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: May 21, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Rhone Wang, Tzu-Cheng Lin, Yu-Jen Cheng, Chih-Wei Lai, Hung-Pin Chang, Tsang-Jiuh Wu
  • Publication number: 20130024019
    Abstract: Methods and apparatus for performing end point determination are disclosed. An embodiment includes an apparatus comprising a process tool and a programmable processor. The process tool has an output for signaling in-situ measurements of physical parameters during processing of a wafer in the process tool, and the process tool has an input for receiving a signal indicating a modification of a recipe for the processing. The programmable processor is for executing a virtual metrology model of the process tool to estimate an estimated characteristic of the wafer achieved during the processing. The estimated characteristic is based on the in-situ measurements and the virtual metrology model. The programmable processor has an output for transmitting the signal when the estimated characteristic exceeds a predetermined threshold based on a target characteristic.
    Type: Application
    Filed: October 31, 2011
    Publication date: January 24, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Rhone Wang, Tzu-Cheng Lin, Yu-Jen Cheng, Chih-Wei Lai, Hung-Pin Chang, Tsang-Jiuh Wu
  • Publication number: 20130023065
    Abstract: Methods and apparatus for performing end point determination. A method includes receiving a wafer into an etch tool chamber for performing an RIE etch; beginning the RIE etch to form vias in the wafer; receiving in-situ measurements of one or more physical parameters of the etch tool chamber that are correlated to the RIE etch process; providing a virtual metrology model for the RIE etch in the chamber; inputting the received in-situ measurements to the virtual metrology model for the RIE etch in the chamber; executing the virtual metrology model to estimate the current via depth; comparing the estimated current via depth to a target depth; and when the comparing indicates the current via depth is within a predetermined threshold of the target depth; outputting a stop signal. An apparatus for use with the method embodiment is disclosed.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 24, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Rhone Wang, Tzu-Cheng Lin, Yu-Jen Cheng, Chih-Wei Lai, Hung-Pin Chang, Tsang-Jiuh Wu
  • Publication number: 20110266356
    Abstract: This specification discloses a device of controlling temperature gain and the method thereof. The invention detects the temperature of work environment and uses it to generate a control signal and a PWM signal for dynamically controlling the heaters around electronic elements to heat up. When the temperature of work environment is too low, the invention can increase the stability of the electronic elements.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 3, 2011
    Applicant: MOXA INC.
    Inventors: Tzu Cheng Lin, Yu Kuang Lee, Wei Cheng Chou, Hsin Ju Wu
  • Patent number: 8010212
    Abstract: A method of fuzzy control for adjusting a semiconductor machine comprising: providing measurement values from first the “parameter of a pre-semiconductor manufacturing process”, second the “parameter of the semiconductor manufacturing process”, and third the “operation parameter of the semiconductor manufacturing process”; performing a fuzzy control to define two inputs and one output corresponding to the measurement values, wherein the difference between the first and third values, and the difference between the second and third values, forms the two inputs, then from the two inputs one target output is calculated by fuzzy inference; finally, determining if the target output is in or out of an acceptable range. Whereby the target output is the “machine control parameter of the semiconductor manufacturing process” and when within an acceptable range is used for adjusting the semiconductor machine.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 30, 2011
    Assignee: Inotera Memories, Inc.
    Inventors: Yi Feng Lee, Tzu-Cheng Lin, Chun Chi Chen, Yun-Zong Tian
  • Patent number: 7773378
    Abstract: A heat-dissipating structure for the expansion board architecture is provided. A fixing element disposed on the heat-absorbing substrate fixes the motherboard and the first expansion board. The heat-generating elements on the motherboard or the first expansion board are directly in touch with the heat-absorbing surface of the heat-absorbing substrate to absorb their heat. The heat-dissipating board extended from the side of the heat-absorbing substrate then dissipates the heat absorbed by the heat-absorbing substrate. The structure thus solves the problems that existing heat-dissipating structures occupy larger space and therefore cannot be effectively used in an expansion board architecture to dissipate heat produced by the heat-generating elements between the motherboard and the expansion board and that it is likely to have assembly tolerance. Using the structure can reduce the space and the assembly tolerance, but effectively enhance heat dissipation in the expansion board architecture.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 10, 2010
    Assignee: Moxa, Inc.
    Inventor: Tzu Cheng Lin
  • Publication number: 20100097769
    Abstract: A heat-dissipating structure for the expansion board architecture is provided. A fixing element disposed on the heat-absorbing substrate fixes the motherboard and the first expansion board. The heat-generating elements on the motherboard or the first expansion board are directly in touch with the heat-absorbing surface of the heat-absorbing substrate to absorb their heat. The heat-dissipating board extended from the side of the heat-absorbing substrate then dissipates the heat absorbed by the heat-absorbing substrate. The structure thus solves the problems that existing heat-dissipating structures occupy larger space and therefore cannot be effectively used in an expansion board architecture to dissipate heat produced by the heat-generating elements between the motherboard and the expansion board and that it is likely to have assembly tolerance. Using the structure can reduce the space and the assembly tolerance, but effectively enhance heat dissipation in the expansion board architecture.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 22, 2010
    Applicant: Moxa Inc.
    Inventor: Tzu Cheng Lin
  • Publication number: 20090326449
    Abstract: The invention is disclosed to a control apparatus of catheter feeder. It comprises two rotatable mechanisms and a transmittal device that can propel the guidewire into continuous motion comprising moving forward, moving backward, moving clockwise, and moving counter-clockwise. The invention comprises of a square frame and three gears that are meshed together and are referred to the first, second, and third gear, respectively. At the front of the third gear are the first and second sets of the idle wheels that can hold the guidewire tightly. The invention employs the mechanical gears to control movement of the guidewire.
    Type: Application
    Filed: October 15, 2008
    Publication date: December 31, 2009
    Applicant: National Taiwan University
    Inventors: Jaw-Lin Wang, Been-Der Yang, Chi-Lin Yang, Wei-Cheng Huang, Yao-Hung Wang, Tzu-Cheng Lin
  • Publication number: 20090259332
    Abstract: A method of fuzzy control for adjusting a semiconductor machine comprising: providing measurement values from first the “parameter of a pre-semiconductor manufacturing process”, second the “parameter of the semiconductor manufacturing process”, and third the “operation parameter of the semiconductor manufacturing process”; performing a fuzzy control to define two inputs and one output corresponding to the measurement values, wherein the difference between the first and third values, and the difference between the second and third values, forms the two inputs, then from the two inputs one target output is calculated by fuzzy inference; finally, determining if the target output is in or out of an acceptable range. Whereby the target output is the “machine control parameter of the semiconductor manufacturing process” and when within an acceptable range is used for adjusting the semiconductor machine.
    Type: Application
    Filed: September 30, 2008
    Publication date: October 15, 2009
    Applicant: INOTERA MEMORIES, INC.
    Inventors: YI FENG LEE, TZU-CHENG LIN, CHUN CHI CHEN, YUN-ZONG TIAN
  • Publication number: 20090197354
    Abstract: A system and method for monitoring a manufacturing process are provided. A wafer is provided. Process parameters of a manufacturing machine are in-situ measured and recorded if the wafer is processed in the manufacturing machine. A wafer measured value of the wafer is measured after the wafer has been processed. The process parameters are transformed into a process summary value. A two dimensional orthogonal chart with a first axis representing the wafer measured value and a second axis representing the process summary value is provided. The two dimensional orthogonal chart includes a close-loop control limit. A visualized point representing the wafer measured value and the process summary value is displayed on the two dimensional orthogonal chart.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 6, 2009
    Applicant: INOTERA MEMORIES, INC.
    Inventors: Tzu-Cheng Lin, Yun-Zong Tian, Chun-Chi Chen, Yi-Feng Lee