Patents by Inventor Ulrich Wegmann

Ulrich Wegmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130293869
    Abstract: Methods for measuring the image quality of a projection objective include providing a measuring structure on an image-side of the projection objective, providing an immersion fluid between the projection objective and the measuring structure, directing light through the projection objective and the immersion fluid to the measuring structure while shielding the measuring structure from the immersion fluid, detecting light transmitted by the measuring structure, and determining an image quality of the projection objective based on the detected light.
    Type: Application
    Filed: June 14, 2013
    Publication date: November 7, 2013
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Publication number: 20130271749
    Abstract: First test beams (464a-d), after passing through an optical system on optical paths that differ in pairs, impinge on a first measurement region (461) at angles that differ in pairs with respect to the measurement plane. Second test beams (465a-d), after passing through the optical system on optical paths that differ in pairs, impinge on a second measurement region (462) at angles that differ in pairs, wherein the second region differs from the first. A value of a first measurement variable of the test beam at the first region is detected for each of the first test beams, and comparably for a second measurement variable at the second region for the second test beams. Impingement regions (467a-d) on reference surface(s) (466, 471) of the optical system are determined and a spatial diagnosis distribution of a property of the reference surface(s) for each test beam is calculated.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: Thomas KORB, Christian HETTICH, Michael LAYH, Ulrich WEGMANN, Karl-Heinz SCHUSTER, Matthias MANGER
  • Patent number: 8537333
    Abstract: An optical imaging device, in particular for microlithography, including an imaging unit adapted to image an object point on an image point and a measurement device. The imaging unit has a first optical element group having at least one first optical element. The imaging device is adapted to participate in the imaging of the object point on the image point, and the measurement unit is adapted to determine at least one image defect occurring on the image point when the object point is imaged. The measuring device includes at least one measurement light source, one second optical element group and at least one detection unit. The measurement light source transmits at least one measurement light bundle. The second optical element group includes at least one optical reference element and one second optical element, the elements adapted to direct the at least one measurement light bundle to the at least one detection unit, to produce at least one detection signal.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: September 17, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Rolf Freimann, Ulrich Wegmann
  • Patent number: 8488127
    Abstract: A measuring system for the optical measurement of an optical imaging system, which is provided to image a pattern arranged in an object surface of the imaging system in an image surface of the imaging system, comprises an object-side structure carrier having an object-side measuring structure, to be arranged on the object side of the imaging system; an image-side structure carrier having an image-side measuring structure, to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: July 16, 2013
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Patent number: 8330935
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: December 11, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Publication number: 20120242996
    Abstract: Immersion objective arrangement including an objective, an immersion medium and an optical scattering disk, and associated method. The optical scattering disk includes a transparent substrate (1) and a light scattering layer (2) adjoining a surface of the substrate and having light-scattering-active particles (3). The light scattering layer has an embedding medium (4) which is optically denser than air and directly adjoins the facing surface of the substrate without intervening air gaps and by which the light-scattering-active particles are surrounded. Such optical scattering disks may be used, e.g., in apparatuses for wavefront measurement of high-aperture microlithography projection objectives employing lateral shearing interferometry.
    Type: Application
    Filed: June 11, 2012
    Publication date: September 27, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventor: Ulrich WEGMANN
  • Patent number: 8199333
    Abstract: Optical scattering disk, use and wavefront measuring apparatus. The optical scattering disk includes a transparent substrate (1) and a light scattering layer (2) adjoining a surface of the substrate and having light-scattering-active particles (3). The light scattering layer has an embedding medium (4) which is optically denser than air and directly adjoins the facing surface of the substrate without intervening air gaps and by which the light-scattering-active particles are surrounded. Such optical scattering disks may be used, e.g., in apparatuses for wavefront measurement of high-aperture microlithography projection objectives employing lateral shearing interferometry.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: June 12, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Ulrich Wegmann
  • Publication number: 20120113429
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Application
    Filed: January 17, 2012
    Publication date: May 10, 2012
    Applicant: CARL ZEISS SMT GMBH
    Inventors: Ulrich Wegmann, Uwe Schellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner
  • Patent number: 8169595
    Abstract: The disclosure relates to an optical apparatus including a light source that emits light in the form of light pulses having a pulse frequency, and including at least one optical element. The disclosure also relates to a projection exposure machine including a pulsed light source and a projection objective, and to a method for modifying the imaging behavior of such an apparatus, such as in a projection exposure machine.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: May 1, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Martin Schriever, Ulrich Wegmann, Stefan Hembacher, Bernhard Geuppert, Juergen Huber, Norbert Kerwien, Michael Totzeck, Markus Hauf
  • Patent number: 8134716
    Abstract: A method and apparatus for spatially resolved wavefront measurement on a test specimen, a method and apparatus for spatially resolved scattered light determination, a diffraction structure support and a coherent structure support therefor, and also an objective or other radiation exposure device manufactured using such a method, and an associated manufacturing method. An embodiment involves carrying out, for the wavefront measurement, a first shearing measuring operation, which includes a plurality of individual measurements with at least two first shearing directions and spatially resolved detection of shearing interferograms generated, and an analogous second shearing measuring operation with at least one second shearing direction, the at least one second shearing direction being non-parallel to at least one first shearing direction. From the shearing interferograms detected, it is possible e.g.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: March 13, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Wolfgang Emer, Helmut Haidner, Ulrich Wegmann
  • Patent number: 8120763
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: February 21, 2012
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Ulrich Wegmann, Uwe Schellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner
  • Patent number: 8004690
    Abstract: A device for the optical measurement of an optical system which, in a useful operating mode, receives useful radiation on a useful radiation entrance side and emits it on a useful radiation exit side. The device includes a measurement radiation source, by which at least one exit-side element, which emits measurement radiation to the optical system, can be positioned on the useful radiation exit side of the optical system, and a detector, by which at least one entrance-side element, which receives measurement radiation coming from the optical system, can be positioned on the useful radiation entrance side of the optical system. The measurement radiation source includes a source-side measurement structure mask for positioning on the useful radiation exit side and/or the detector includes a detector-side measurement structure mask for positioning on the useful radiation entrance side.
    Type: Grant
    Filed: January 12, 2005
    Date of Patent: August 23, 2011
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Ulrich Wegmann
  • Publication number: 20110164232
    Abstract: An optical imaging device, in particular for microlithography, including an imaging unit adapted to image an object point on an image point and a measurement device. The imaging unit has a first optical element group having at least one first optical element. The imaging device is adapted to participate in the imaging of the object point on the image point, and the measurement unit is adapted to determine at least one image defect occurring on the image point when the object point is imaged. The measuring device includes at least one measurement light source, one second optical element group and at least one detection unit. The measurement light source transmits at least one measurement light bundle. The second optical element group includes at least one optical reference element and one second optical element, the elements adapted to direct the at least one measurement light bundle to the at least one detection unit, to produce at least one detection signal.
    Type: Application
    Filed: January 3, 2011
    Publication date: July 7, 2011
    Applicant: CARL ZEISS SMT GmbH
    Inventors: Rolf FREIMANN, Ulrich Wegmann
  • Patent number: 7911624
    Abstract: A device and method for the interferometric measurement of phase masks, particularly from lithography. Radiation passing through a coherence mask is brought to interference by a diffraction grating. A phase mask is arranged in or near the pupil plane of the first imaging optics which can be positioned exactly in the x-y direction by which interferograms are generated which are phase-shifted in the x-y direction by translational displacement of the coherence mask or of the diffraction grating. The interferograms are imaged onto the spatially resolving detector by second imaging optic and the phase and transmission functions of the phase mask are determined by an evaluation unit. The invention can, of course, generally be applied to planar phase objects, such as biological structures, for example, points of establishment with respect to an interference microscope.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: March 22, 2011
    Assignee: Carl Zeiss SMS GmbH
    Inventors: Helmut Haidner, Ulrich Wegmann
  • Publication number: 20100315651
    Abstract: A measuring system for the optical measurement of an optical imaging system, which is provided to image a pattern arranged in an object surface of the imaging system in an image surface of the imaging system, comprises an object-side structure carrier having an object-side measuring structure, to be arranged on the object side of the imaging system; an image-side structure carrier having an image-side measuring structure, to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid.
    Type: Application
    Filed: August 5, 2010
    Publication date: December 16, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Patent number: 7796274
    Abstract: A measuring system (100) for the optical measurement of an optical imaging system (150), which is provided to image a pattern arranged in an object surface (155) of the imaging system in an image surface (156) of the imaging system, comprises an object-side structure carrier (110) having an object-side measuring structure (111), to be arranged on the object side of the imaging system; an image-side structure carrier (120) having an image-side measuring structure (121), to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector (130) for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid (171).
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: September 14, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathussen
  • Patent number: 7760366
    Abstract: A measuring system for the optical measurement of an optical imaging system, which is provided to image a pattern arranged in an object surface of the imaging system in an image surface of the imaging system, comprises an object-side structure carrier having an object-side measuring structure, to be arranged on the object side of the imaging system; an image-side structure carrier having an image-side measuring structure, to be arranged on the image side of the imaging system; the object-side measuring structure and the image-side measuring structure being matched to each other in such a way that, when the object-side measuring structure is imaged onto the image-side measuring structure with the aid of the imaging system, a superposition pattern is produced; and a detector for the locally resolving acquisition of the superposition pattern. The imaging system is designed as an immersion system for imaging with the aid of an immersion liquid.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 20, 2010
    Assignee: Carl Zeiss SMT AG
    Inventors: Markus Mengel, Ulrich Wegmann, Albrecht Ehrmann, Wolfgang Emer, Reiner Clement, Ludo Mathijssen
  • Publication number: 20100141912
    Abstract: A microlithographic projection exposure apparatus includes a projection lens that is configured for immersion operation. For this purpose an immersion liquid is introduced into an immersion space that is located between a last lens of the projection lens on the image side and a photosensitive layer to be exposed. To reduce fluctuations of refractive index resulting from temperature gradients occurring within the immersion liquid, the projection exposure apparatus includes heat transfer elements that heat or cool partial volumes of the immersion liquid so as to achieve an at least substantially homogenous or at least substantially rotationally symmetric temperature distribution within the immersion liquid.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Applicant: CARL ZEISS SMT AG
    Inventors: Albrecht Ehrmann, Ulrich Wegmann, Rainer Hoch, Joerg Mallmann, Karl-Heinz Schuster, Ulrich Loering, Toralf Gruner, Bernhard Kneer, Bernhard Geuppert, Franz Sorg, Jens Kugler, Norbert Wabra
  • Patent number: 7623218
    Abstract: A method of manufacturing a miniaturized device comprises disposing a patterning structure to be imaged in a region of an object plane of an imaging optics of the projection exposure system; disposing a substrate carrying a resist in a region of an image plane of the imaging optics and exposing portions of the substrate with images of the patterning structure using the projection exposure system; maintaining a flow of an immersion liquid to and from a space between the substrate and a front lens of the imaging optics closest to the substrate; measuring a physical property which is indicative of at least one of a refractive index of the immersion liquid and a change of the refractive index of the immersion liquid over time, wherein the physical property is measured using a beam of measuring light interacting with the immersion liquid; adjusting at least one optical property of the projection exposure system based on the measured physical property; exposing further portions of the substrate with images of the p
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: November 24, 2009
    Assignee: Carl Zeiss SMT AG
    Inventors: Ulrich Wegmann, Helmut Haidner
  • Publication number: 20090257049
    Abstract: A device for the optical measurement of an optical system, in particular an optical imaging system, is provided. The device includes at least one test optics component arranged on an object side or an image side of the optical system. An immersion fluid is adjacent to at least one of the test optics components. A container for use in this device, a microlithography projection exposure machine equipped with this device, and a method which can be carried out with the aid of this device are also provided. The device and method provide for optical measurement of microlithography projection objectives with high numerical apertures by using wavefront detection with shearing or point diffraction interferometry, or a Moiré measuring technique.
    Type: Application
    Filed: June 23, 2009
    Publication date: October 15, 2009
    Applicant: Carl Zeiss SMT AG
    Inventors: Ulrich Wegmann, Uwe Schellhorn, Joachim Stuehler, Albrecht Ehrmann, Martin Schriever, Markus Goeppert, Helmut Haidner