Patents by Inventor Ursus Krüger

Ursus Krüger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7935428
    Abstract: The invention relates to a component made from a substrate with a coating, whereby that coating forms a surface of the component with reduced wettability. The invention further relates to production of said component. The coating which forms a surface with projections and recesses, brings about a reduction in wettability, in particular, by means of an effect based on the properties of lotus blossom. According to the invention, a metal with antimicrobial properties, in particular silver is provided under the coating, which is not fully covered, in other words, regions remain free of the coating in which the surface of the component is formed by the antimicrobial properties.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: May 3, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Christian Doye, Ursus Krüger, Manuela Schneider
  • Patent number: 7929128
    Abstract: An apparatus for the inspection of the heat shield of a space shuttle has a drive so that it can automatically undertake an examination of the tiles of the heat shield. The apparatus moves over the surface with the aid of the drive, and images of the region to be inspected are produced with the aid of a camera. For these images, the tiles are illuminated subsequently by light sources from different directions, as a result of which the tiles can be reliably evaluated with regard to possible defects.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: April 19, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Oliver Stier
  • Patent number: 7906171
    Abstract: The invention relates to a method for producing a layer (110) having nanoparticles (40), on a substrate (100). The invention is based on the object of specifying a method for producing a layer containing nanoparticles, which method can be carried out particularly easily and nevertheless offers a very wide degree of freedom for the configuration and the composition of the layer to be produced. According to the invention, this object is achieved in that nanoparticles (40) are released and a nanoparticle stream (50) is produced in a first process chamber (10), the nanoparticle stream (50) is passed into a second process chamber (80), and the nanoparticles (40) are deposited on the substrate (100) in the second process chamber (80).
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: March 15, 2011
    Assignee: Siemens Aktiegesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler
  • Publication number: 20110039024
    Abstract: The invention relates to a cold gas spraying method with the aid of which a substrate to be coated can be coated with particles. According to the invention, it is provided that microencapsulated agglomerates of nanoparticles are used as particles. This advantageously allows the advantages that accompany the use of nanoparticles to be used for the coating. The nanoparticles 271, 27b are held together by microencapsulations 26c, wherein the microencapsulated particles 19 formed in this way that are used in the cold gas spraying method have dimensions I the micrometer range, thereby allowing them to be used in the first place in cold gas spraying The microencapsulated nanoparticles may be used for example to produce a UV protective coating on lamp bases for gas discharge lamps.
    Type: Application
    Filed: September 15, 2006
    Publication date: February 17, 2011
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Uwe Pyritz, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20110027496
    Abstract: The embodiments include a method for producing a coating through cold gas spraying. In the process, particles according to the embodiments are used which contain a photocatalytic material. In order to improve the effect of this photocatalytic material (such as titanium dioxide), a reactive gas can be added to the cold gas stream, the reactive gas being activated by a radiation source not shown, for example by UV light, on the surface of the coating that forms. This makes it possible to, for example, dose titanium dioxide with nitrogen. This allows the production of in situ layers having advantageously high catalytic effectiveness. The use of cold gas spraying has the additional advantage in that the coating can be designed to contain pores that enlarge the surface available for catalysis.
    Type: Application
    Filed: March 25, 2009
    Publication date: February 3, 2011
    Inventors: Christian Doye, Ursus Krüger, Uwe Pyritz
  • Publication number: 20100314023
    Abstract: Short fibers in a solder or a welding material often do not have the desired strength. Fiber mats that are introduced onto a surface or into a recess of a metallic component are provided. In addition a process for applying material to a metallic component is provided. In the process, a first fiber mat and a second fiber mat are used.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 16, 2010
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Steffen Walter
  • Publication number: 20100297345
    Abstract: A method for repairing a component such as a turbine blade is provided. At the end of its operating time, the component has, for example, a depletion of aluminium in a region near the surface. The application of a repair layer is provided including particles with an increased proportion of aluminium. A subsequent heat treatment may achieve the effect of equalizing the concentration of aluminium between the repair layer and the region near the surface, and so the aluminium content required for new components is achieved again.
    Type: Application
    Filed: September 19, 2008
    Publication date: November 25, 2010
    Inventors: Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Publication number: 20100272888
    Abstract: In a method for producing a starting material (M, N, N?) for the production of a wear layer (420), a coating (40) with a composition which corresponds to that of the wear layer (420) which is to be produced is chemically undissolved from its substrate (30) and is detached as a solid body, and that the starting material (M, N, N?) is formed by the layer material (60) of the detached coating (40).
    Type: Application
    Filed: July 9, 2007
    Publication date: October 28, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Patent number: 7811662
    Abstract: Short fibers in a solder or a welding material often do not have the desired strength. The invention uses fiber mats (13) which have been introduced onto a surface (10) or into a recess (7) of a metallic component.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 12, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 7794581
    Abstract: Components which are subject to operating loads can often be passed for refurbishment by means of an acid treatment. The time for which the components remain in the acid has hitherto been determined empirically, which means that individual loads are not taken into account. The process according to the invention for the surface treatment of a component proposes that at least repeatedly a measurement voltage be applied to the component, resulting in the flow of a current, the time profile of which represents the state of the surface treatment and is used to decide upon when to terminate or interrupt the acid treatment.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: September 14, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Jan Steinbach, Gabriele Winkler
  • Publication number: 20100221423
    Abstract: In a method for creating a dry lubricant layer, the layer is formed by a coating material which is first applied to a substrate, on which the dry lubricant layer is to be produced. The coating material contains a solvent such as ethanethiol and the precursors of a metal sulphide, in particular a metaloxysulphide, such as a molybdenum salt of dithiocarboxylic acid. Once the coating material has been applied to the substrate, the material is subjected to thermal treatment, whereby the solvent evaporates and the precursors of the metal sulphide react with one another to form the dry lubricant layer. This advantageously permits the creation of dry lubricant layers containing a high fraction of metal sulphide, giving the layers improved sliding friction characteristics. Another advantage is that the oxysulphide layers that have been formed are also particularly stable in relation to an oxidation.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 2, 2010
    Inventors: Jens Dahl Jensen, Ursus Krüger, Gabriele Winkler
  • Publication number: 20100212541
    Abstract: The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties.
    Type: Application
    Filed: May 5, 2010
    Publication date: August 26, 2010
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Raymond Ullrich
  • Publication number: 20100215869
    Abstract: In a process for producing a ceramic layer (14) on a component (15) in a microwave oven (11), it is provided that a microwave generator (12) generates microwaves (17) of a defined frequency which selectively heats only constituents of the coating material (14) applied for coating the component (15). It is thereby advantageously possible to produce a ceramic layer from the precursors present in the coating material with low energy consumption and with low thermal loading of the component (15). The frequency of the microwave excitation can be set, for example, to the solvent (acetic acid, propionic acid) present in the coating material or to the heating of particles of intermetallic compounds or ceramics present in the coating material for this purpose.
    Type: Application
    Filed: June 13, 2008
    Publication date: August 26, 2010
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Gabriele Winkler
  • Patent number: 7781024
    Abstract: The invention relates to a method for producing ceramic layers by spraying. A cold gas spraying method is used to produce polymer ceramics from pre-ceramic polymers. According to said method, a cold gas stream, to which particles of the pre-ceramic polymers are added via a conduit, is generated by a spray gun. The energy for creating a layer on a substrate is produced by injecting a powerful kinetic energy into the cold gas stream, thus preventing or significantly restricting the thermal heating of the cold gas stream. This permits the heat-sensitive pre-ceramic polymers to be spray-applied as a coating on a substrate using a cold gas spraying method. Polymer ceramics can thus be used in an economic method for the rapid production of layers with a relatively large thickness. The invention allows for example armoured layers, thermal protection layers and other functional layers to be produced.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: August 24, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Raymond Ullrich
  • Publication number: 20100189920
    Abstract: In a method for producing a component (20) with a coating (24) containing nanoparticles (21), it is provided that, in order to introduce the nanoparticles (21) into the coating (24), a film (19) with the dispersely distributed nanoparticles (21) is applied to the surface (22) to be coated, which decomposes with incorporation of the nanoparticles (21) during the actual coating operation and is thereby not incorporated into the layer.
    Type: Application
    Filed: June 20, 2007
    Publication date: July 29, 2010
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Michael Rindler, Raymond Ullrich
  • Publication number: 20100189895
    Abstract: In a method for coating the inner walls of pipes (11), and in a coating device suitable for coating, a combined heating and cooling device (19) having heating areas (21) and cooling areas (22) is used for the method. This device can be guided along the pipe (11) to be coated, wherein a fluid (16) containing the coating active agent is supplied to the interior of the pipe. The combined heating and cooling treatment for the pipe supports the process of coating formation. The cooling process is subject to a desired profile by the use of the cooling area (22) and is not determined by chance, in contrast to the cooling process in the prior art.
    Type: Application
    Filed: June 13, 2008
    Publication date: July 29, 2010
    Inventors: Frank Arndt, Jens Dahl Jensen, Ursus Krüger, Gabriele Winkler
  • Patent number: 7763367
    Abstract: The subject matter of the invention is a component which is provided with a ceramic coating forming the surface. Inventively there is provision at least in a cover layer of the coating for nanoparticles made from a colorant (CrCoAl or a spinel-type oxide) and aluminum oxide nanoparticles. This combination of nanoparticles in the coating advantageously results in a resistance to high temperatures of the coloring of the surface of up to 1000° C. not previously known. This allows even components under great stress, such as for example compressor or turbine blades of a gas turbine, to be provided with temperature-resistant coloring. This can then be used for an optical inspection for example. Protection is also claimed for a method for creating the inventive coating.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 27, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Frank Arndt, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Gabriele Winkler
  • Publication number: 20100183254
    Abstract: The invention relates to a component that is suitable for use as a sliding bearing. The invention further relates to a method for the production of said component. The design of the component according to the invention provides a layer of a light metal material (13), which is provided with an oxide layer (15) containing pores (16) in the direction of the sliding surface (23) of the component. A hard material (18) is placed in the pores, which greatly increases the firmness of said layer region, thus creating the mechanical firmness for use as a sliding bearing. In order to counteract the tendency of said firm layer region to experience brittle failure, the oxide layer (15) is coated with a solid lubricant layer (20). Said solid lubricant layer comprises a metallic, ductile matrix (21), which distributes a force (F) acting at certain points over a larger surface region (b).
    Type: Application
    Filed: September 4, 2008
    Publication date: July 22, 2010
    Applicant: Siemens Aktiengesellschaft
    Inventors: Jens Dahl Jensen, Ursus Krüger, Heike Schiewe, Manuela Schneider, Gabriele Winkler, Hartmut Walter
  • Publication number: 20100183826
    Abstract: A description is given of a method for depositing a non-metallic, in particular ceramic, coating on a substrate (2) by means of cold gas spraying, which comprises the method steps of: producing a reactive gas flow (5) comprising at least one reactive gas, injecting into the reactive gas flow (5) particles (4) consisting of at least one material required for producing a non-metallic, in particular ceramic, coating material by reaction with the reactive gas, so as to form a mixture flow of reactive gas and particles (4), producing reactive gas radicals in the mixture flow, and directing the mixture flow comprising reactive gas radicals and particles onto a surface of a substrate (2) to be coated, and so a non-metallic, in particular ceramic, coating is deposited on the surface of the substrate (2). In addition, a description is given of a device (1) for carrying out the method.
    Type: Application
    Filed: September 29, 2006
    Publication date: July 22, 2010
    Inventors: Dirk Janz, Jens Dahl Jensen, Jens Klingemann, Ursus Krüger, Daniel Körtvelyessy, Volkmar Lüthen, Ralph Reiche, Oliver Stier
  • Patent number: 7744351
    Abstract: The invention relates to a material composition that is used for producing a coating for a component, especially a turbine component, which is made of a metallic basic material, i.e. a metal or a metal alloy. Said material composition comprises a matrix material for forming a basic coating matrix and at least one filler for adjusting desired coating proportions or coating characteristics. The matrix material can be provided especially with basic glass ceramic properties. The inventive material composition is characterized in that the matrix material and/or the filler contains nanoparticles.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 29, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Michael Rindler, Jan Steinbach, Raymond Ullrich