Patents by Inventor Vadim Berger

Vadim Berger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7804879
    Abstract: A gas discharge laser includes elongated discharge electrodes having an active surface width that varies along the length of the resonator. In one example each of the electrodes is formed by a row of pins having a circular active surface. The pins are diametrically aligned with the active surfaces generally coplanar.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: September 28, 2010
    Assignee: Coherent, Inc.
    Inventors: Igor Bragin, Vadim Berger
  • Publication number: 20070274363
    Abstract: A gas discharge laser includes elongated discharge electrodes having an active surface width that varies along the length of the resonator. In one example each of the electrodes is formed by a row of pins having a circular active surface. The pins are diametrically aligned with the active surfaces generally coplanar.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 29, 2007
    Inventors: Igor Bragin, Vadim Berger
  • Patent number: 7266137
    Abstract: Output beam parameters of a gas discharge laser are stabilized by maintaining a molecular fluorine component at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is subject to depletion within the discharge chamber. Gas injections including molecular fluorine can increase the partial pressure of molecular fluorine by a selected amount. The injections can be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure. The amount per injection and/or the interval between injections can be varied, based on factors such as driving voltage and a calculated amount of molecular fluorine in the discharge chamber. The driving voltage can be in one of multiple driving voltage ranges that are adjusted based on system aging. Within each range, gas injections and gas replacements can be performed based on, for example, total applied electrical energy or time/pulse count.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: September 4, 2007
    Assignee: Lambda Physik AG
    Inventors: Hans-Stephan Albrecht, Klaus Wolfgang Vogler, Juergen Kleinschmidt, Thomas Schroeder, Igor Bragin, Vadim Berger, Uwe Stamm, Wolfgang Zschocke, Sergei Govorkov
  • Publication number: 20070002918
    Abstract: An excimer laser has a laser chamber containing a laser gas and including an electrode assembly for firing gas discharge pulses in the laser gas for pumping the laser. The electrode assembly includes two elongated electrodes, one or both of which is partially covered by a ceramic foam. The electrodes are arranged to provide a discharge gap between the electrodes. The ceramic foam on an electrode serves to damp acoustic disturbances and resulting refractive index disturbances in the gas that occur as a result of firing a gas discharge pulse in the discharge gap.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: Norbert Niemoeller, Igor Bragin, Vadim Berger
  • Patent number: 7079565
    Abstract: Arcing can be minimized in a discharge chamber of an excimer or molecular fluorine laser system by utilizing an improved electrode structure. An electrode structure can include at least one ceramic spoiler positioned near the discharge region of the electrode. An insulating ceramic spoiler can reduce the effective area over which arcing can occur, and can reduce the likelihood of arcing by improving the flow of gas between the electrodes, such as by allowing for design flexibility and reducing the necessary height of a nose portion used to control the discharge area of the electrode. An improved blower design, which can utilize improved bearings and a dry film lubricant, can help to circulate the laser gas between the electrode structures, such as at a speed of at least 30 m/s in order to operate the laser at repetition rates of 4 kHz or higher.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: July 18, 2006
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Oleg Melnikov, Konstantin Aab, Juergen Baumler
  • Publication number: 20060056478
    Abstract: Output beam parameters of a gas discharge laser are stabilized by maintaining a molecular fluorine component at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is subject to depletion within the discharge chamber. Gas injections including molecular fluorine can increase the partial pressure of molecular fluorine by a selected amount. The injections can be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure. The amount per injection and/or the interval between injections can be varied, based on factors such as driving voltage and a calculated amount of molecular fluorine in the discharge chamber. The driving voltage can be in one of multiple driving voltage ranges that are adjusted based on system aging. Within each range, gas injections and gas replacements can be performed based on, for example, total applied electrical energy or time/pulse count.
    Type: Application
    Filed: October 31, 2005
    Publication date: March 16, 2006
    Inventors: Hans-Stephen Albrecht, Klaus Vogler, Juergen Kleinschmidt, Thomas Schroeder, Igor Bragin, Vadim Berger, Uwe Stamm, Wolfgang Zschocke, Sergei Govorkov
  • Patent number: 6965624
    Abstract: A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a molecular fluorine component of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is provided at an initial partial pressure and is subject to depletion within the laser discharge chamber. Injections of gas including molecular fluorine are performed each to increase the partial pressure of molecular fluorine by a selected amount in the laser chamber preferably less than 0.2 mbar per injection, or 7% of an amount of F2 already within the laser chamber. A number of successive injections may be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: November 15, 2005
    Assignee: Lambda Physik AG
    Inventors: Hans-Stephan Albrecht, Klaus Wolfgang Vogler, Juergen Kleinschmidt, Thomas Schroeder, Igor Bragin, Vadim Berger, Uwe Stamm, Wolfgang Zschocke, Sergei Govorkov
  • Publication number: 20050058172
    Abstract: The stability of a gas discharge in an excimer or molecular fluorine laser system can be improved by generating multiple discharge pulses in the resonator chamber, instead of a single discharge pulse. Each of these discharges can be optimized in both energy transfer and efficient coupling to the gas. The timing of each discharge can be controlled using, for example, a common pulser component along with appropriate circuitry to provide energy pulses to each of a plurality of segmented main discharge electrodes. Applying the energy to the segmented electrodes rather than to a standard discharge electrode pair allows for an optimization of the temporal shape of the resulting superimposed laser pulse. The optimized shape and higher stability can allow the laser system to operate at higher repetition rates, while minimizing the damage to system and/or downstream optics.
    Type: Application
    Filed: September 8, 2004
    Publication date: March 17, 2005
    Inventors: Rainer Paetzel, Igor Bragin, Andreas Targsdorf, Vadim Berger, Rustem Osmanow
  • Publication number: 20050002427
    Abstract: The consumption and/or erosion of electrodes in high repetition rate gas discharge lasers, such as excimer or molecular fluorine lasers, can be reduced using any of a number of temperature regulation approaches described herein. A flow of a cooling medium can be used to remove heat from the electrodes during laser operation, in order to reduce the rate of consumption and/or erosion. The rate of erosion can be controlled by adjusting the rate and/or temperature of the cooling medium flowing through the electrodes, or in bodies in good thermal contact with those electrodes. The cooled electrodes also can function to remove heat from the laser gas, and can have finned surfaces to facilitate such heat removal. Regulating the temperature of the electrodes and laser gas also can function to minimize resonance effects in the laser gas due to the presence of temperature gradients.
    Type: Application
    Filed: April 28, 2004
    Publication date: January 6, 2005
    Inventors: Igor Bragin, Vadim Berger, Ulrich Rebhan, Norbert Niemoller, Konstantin Aab
  • Patent number: 6834066
    Abstract: Method and system for providing stabilization techniques for high repetition rate gas discharge lasers with active loads provided in the discharge circuitry design which may include a resistance provided in the discharge circuitry.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: December 21, 2004
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Juergen Kleinschmidt
  • Publication number: 20040252740
    Abstract: A method and apparatus is provided for stabilizing output beam parameters of a gas discharge laser by maintaining a molecular fluorine component of the laser gas mixture at a predetermined partial pressure using a gas supply unit and a processor. The molecular fluorine is provided at an initial partial pressure and is subject to depletion within the laser discharge chamber. Injections of gas including molecular fluorine are performed each to increase the partial pressure of molecular fluorine by a selected amount in the laser chamber preferably less than 0.2 mbar per injection, or 7% of an amount of F2 already within the laser chamber. A number of successive injections may be performed at selected intervals to maintain the constituent gas substantially at the initial partial pressure for maintaining stable output beam parameters.
    Type: Application
    Filed: January 6, 2003
    Publication date: December 16, 2004
    Applicant: Lambda Physik AG.
    Inventors: Hans-Stephan Albrecht, Klaus Wolfgang Vogler, Juergen Kleinschmidt, Thomas Schroeder, Igor Bragin, Vadim Berger, Uwe Stamm, Wolfgang Zschocke, Sergei Govorkov
  • Patent number: 6785316
    Abstract: A final stage capacitance of a pulse compression circuit for an excimer or molecular fluorine lithography laser system is provided by a set of peaking capacitors connected through a first inductance to the electrodes and a set of sustaining capacitors connected to the electrodes through a second inductance substantially greater than the first inductance. Current pulses through the discharge are temporally extended relative to current pulses of a system having its final stage capacitance provided only by a set of peaking capacitors connected to the electrodes via the first inductance. An amplified spontaneous emission (ASE) level in the laser pulses is reduced thereby enhancing their spectral purity.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: August 31, 2004
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Uwe Stamm
  • Publication number: 20040131100
    Abstract: Arcing can be minimized in a discharge chamber of an excimer or molecular fluorine laser system by utilizing an improved electrode structure. An electrode structure can include at least one ceramic spoiler positioned near the discharge region of the electrode. An insulating ceramic spoiler can reduce the effective area over which arcing can occur, and can reduce the likelihood of arcing by improving the flow of gas between the electrodes, such as by allowing for design flexibility and reducing the necessary height of a nose portion used to control the discharge area of the electrode. An improved blower design, which can utilize improved bearings and a dry film lubricant, can help to circulate the laser gas between the electrode structures, such as at a speed of at least 30 m/s in order to operate the laser at repetition rates of 4 kHz or higher.
    Type: Application
    Filed: December 4, 2003
    Publication date: July 8, 2004
    Inventors: Igor Bragin, Vadim Berger, Oleg Melnikov, Konstantin Aab, Juergen Baumler
  • Patent number: 6757315
    Abstract: A preionization device for a gas laser includes an internal preionization electrode having a dielectric housing around it such that the preionization device is of corona type. The internal electrode connects to advantageous electrical circuitry, preferably external to the discharge chamber via a conductive feedthrough. The circuitry reduces the voltage across the dielectric tube of the preionization unit to reduce over-flashing at tube ends and oscillations due to residual energies stored in the dielectric. A semi-transparent mesh electrode between the preionization unit and the discharge area prevents field distortions and discharge instabilities.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: June 29, 2004
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Ivan Tassy-Julien, Uwe Stamm
  • Patent number: 6556609
    Abstract: A laser for an excimer or molecular fluorine laser includes an electrode chamber connected with a gas flow vessel and having a pair of main electrodes and a preionization unit each connected to a discharge circuit. A spoiler is provided within the electrode chamber and is shaped to provide a more uniform gas flow through the discharge area between the main electrodes, to shield one of the preionization units from one of the main electrodes, and to reflect acoustic waves generated in the discharge area into the gas flow vessel for absorption therein. A spoiler unit may include a pair of opposed spoiler elements on either side of the discharge area. One or both main electrodes includes a base portion and a center portion which may be a nipple protruding from the base portion. The center portion substantially carries the periodic discharge current such that the discharge width is and may be significantly less than the width of the base portion.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: April 29, 2003
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Uwe Stamm, Ulrich Rebhan
  • Patent number: 6546036
    Abstract: A method and devices for preionizing the main discharge gas volume of a gas discharge laser are described. The method and devices provide a preionizing discharge to the main gas discharge volume from above or below the main gas discharge volume. In combination with a shielding arrangement which reduces the spread of the preionization discharge other than to the main gas discharge volume, the exposure of other laser components and gas volumes to said preionization discharge is thereby minimized.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: April 8, 2003
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger
  • Patent number: 6466599
    Abstract: A laser for an excimer or molecular fluorine laser includes an electrode chamber connected with a gas flow vessel and having a pair of main electrodes and a preionization unit each connected to a discharge circuit. A spoiler is provided within the electrode chamber and is shaped to provide a more uniform gas flow through the discharge area between the main electrodes, to shield one of the preionization units from one of the main electrodes, and to reflect acoustic waves generated in the discharge area into the gas flow vessel for absorption therein. A spoiler unit may include a pair of opposed spoiler elements on either side of the discharge area. One or both main electrodes includes a base portion and a center portion which may be a nipple protruding from the base portion. The center portion substantially carries the periodic discharge current such that the discharge width is and may be significantly less than the width of the base portion.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: October 15, 2002
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Uwe Stamm, Ulrich Rebhan
  • Patent number: 6430205
    Abstract: A laser for an excimer or molecular fluorine laser includes an electrode chamber connected with a gas flow vessel and having a pair of main electrodes and a preionization unit each connected to a discharge circuit. A spoiler is provided within the electrode chamber and is shaped to provide a more uniform gas flow through the discharge area between the main electrodes, to shield one of the preionization units from one of the main electrodes, and to reflect acoustic waves generated in the discharge area into the gas flow vessel for absorption therein. A spoiler unit may include a pair of opposed spoiler elements on either side of the discharge area. One or both main electrodes includes a base portion and a center portion which may be a nipple protruding from the base portion. The center portion substantially carries the periodic discharge current such that the discharge width is and may be significantly less than the width of the base portion.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: August 6, 2002
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Uwe Stamm, Ulrich Rebhan
  • Patent number: 6414978
    Abstract: A laser for an excimer or molecular fluorine laser includes an electrode chamber connected with a gas flow vessel and having a pair of main electrodes and a preionization unit each connected to a discharge circuit. A spoiler is provided within the electrode chamber and is shaped to provide a more uniform gas flow through the discharge area between the main electrodes, to shield one of the preionization units from one of the main electrodes, and to reflect acoustic waves generated in the discharge area into the gas flow vessel for absorption therein. A spoiler unit may include a pair of opposed spoiler elements on either side of the discharge area. One or both main electrodes includes a base portion and a center portion which may be a nipple protruding from the base portion. The center portion substantially carries the periodic discharge current such that the discharge width is and may be significantly less than the width of the base portion.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: July 2, 2002
    Assignee: Lambda Physik AG
    Inventors: Igor Bragin, Vadim Berger, Uwe Stamm, Ulrich Rebhan
  • Publication number: 20020012371
    Abstract: Method and system for providing stabilization techniques for high repetition rate gas discharge lasers with active loads provided in the discharge circuitry design which may include a resistance provided in the discharge circuitry.
    Type: Application
    Filed: April 18, 2001
    Publication date: January 31, 2002
    Inventors: Igor Bragin, Vadim Berger, Juergen Kleinschmidt