Patents by Inventor Vadim Bromberg

Vadim Bromberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190017413
    Abstract: A method of fabricating and repairing a gas turbine component having a plurality of cooling holes defined therein is provided. The method includes determining a parameter of a first cooling hole defined in the gas turbine component, and generating a tool path for forming a protective cap around the first cooling hole. The tool path is based at least partially on the parameter of the first cooling hole. The method also includes directing a robotic device to follow the tool path, and discharging successive layers of ceramic slurry towards the gas turbine component as the tool path is followed such that the protective cap is formed around the first cooling hole.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 17, 2019
    Inventors: Vadim Bromberg, Jonathan Matthew Lomas, Hongqiang Chen
  • Patent number: 10100668
    Abstract: A method of fabricating and repairing a gas turbine component having a plurality of cooling holes defined therein is provided. The method includes determining a parameter of a first cooling hole defined in the gas turbine component, and generating a tool path for forming a protective cap around the first cooling hole. The tool path is based at least partially on the parameter of the first cooling hole. The method also includes directing a robotic device to follow the tool path, and discharging successive layers of ceramic slurry towards the gas turbine component as the tool path is followed such that the protective cap is formed around the first cooling hole.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: October 16, 2018
    Assignee: General Electric Company
    Inventors: Vadim Bromberg, Jonathan Matthew Lomas, Hongqiang Chen
  • Publication number: 20180243793
    Abstract: Assemblies for an ultrasonic probe and manufacturing methods are presented. In one example, the method includes additively forming first portions of the assembly using a first material with first acoustic properties and second portions of the assembly using a second material with second acoustic properties, the first and second acoustic properties being configured to modify ultrasonic signals of the ultrasonic probe. In another aspect, a housing for an ultrasonic probe is presented. The housing includes additively-formed portions, a fluid channel, and at least one cavity. The first additively-formed portions include a first material with first acoustic properties. The second additively-formed portions include a second material with second acoustic properties. The first and second acoustic properties are configured to modify ultrasonic signals of the ultrasonic probe. The fluid channel is for receiving fluid within the housing of the ultrasonic probe.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 30, 2018
    Inventors: Matthew Harvey Krohn, Sven Runte, Vadim Bromberg, Kwok Pong Chan, Alexander Felix Fiseni, Mihirkumar Pravinbhai Patel
  • Publication number: 20180236731
    Abstract: A method of binder jet printing a part includes depositing a layer of a powder on a working surface and selectively printing a binder solution comprising a binder into the layer of powder in a first pattern to generate a printed layer. The pattern is representative of a structure of a layer of the part. The method also includes selectively printing a channel support agent solution comprising a channel support agent into the layer of powder to generate a green body. The channel support agent is selectively printed in a second pattern representative of an internal channel of the part. The method further includes heating the green body part above a first temperature to remove the binder and generate a brown body part and heating the brown body part above a second temperature to sinter the powder to generate the part having the internal channel generated from removal of the channel support agent.
    Type: Application
    Filed: February 17, 2017
    Publication date: August 23, 2018
    Inventors: Arunkumar Natarajan, Carlos Bonilla Gonzalez, Vadim Bromberg, Jeffrey Jon Schoonover, Srikanth Chandrudu Kottilingam, Prabhjot Singh, Kwok Pong Chan
  • Publication number: 20180140278
    Abstract: An ultrasound transducer includes a transducer array having a plurality of transducer elements. The transducer array has a first side and a second side. Further, one or more ground electrodes are disposed on the first side of the transducer array, and one or more signal electrodes are disposed on the second side of the transducer array. Moreover, an acoustic backing structure is operatively coupled to the plurality of transducer elements of the transducer array. Also, a plurality of electrical traces is routed on a surface of the acoustic backing structure and operatively coupled to at least one of the one or more signal electrodes and one or more ground electrodes.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 24, 2018
    Inventors: Vadim Bromberg, Lowell Scott Smith, Douglas Glenn Wildes, Kwok Pong Chan, Reinhold Bruestle, Matthew Harvey Krohn, Chester Frank Saj
  • Publication number: 20170288638
    Abstract: The present disclosure relates to the bulk manufacture of transducer arrays, including arrays having at least one 3D printed (or otherwise additive manufactured) acoustic matching layers. In certain implementations, the manufactured transducers include a composite-piezoelectric transducer on a de-matching layer. In one implementation, by producing multiple arrays at once on a common carrier, and by using direct-deposit additive processes for the matching layers, the described processes greatly reduce the number of parts and the number of manual operations.
    Type: Application
    Filed: March 31, 2016
    Publication date: October 5, 2017
    Inventors: Douglas Glenn Wildes, Lowell Scott Smith, Kwok Pong Chan, Vadim Bromberg
  • Publication number: 20170241288
    Abstract: A method of fabricating and repairing a gas turbine component having a plurality of cooling holes defined therein is provided. The method includes determining a parameter of a first cooling hole defined in the gas turbine component, and generating a tool path for forming a protective cap around the first cooling hole. The tool path is based at least partially on the parameter of the first cooling hole. The method also includes directing a robotic device to follow the tool path, and discharging successive layers of ceramic slurry towards the gas turbine component as the tool path is followed such that the protective cap is formed around the first cooling hole.
    Type: Application
    Filed: February 24, 2016
    Publication date: August 24, 2017
    Inventors: Vadim Bromberg, Jonathan Matthew Lomas, Hongqiang Chen
  • Patent number: 9678030
    Abstract: A sensor for detecting gaseous agents has a transducer, which includes an electrical resonant circuit that forms an antenna. The sensor further includes a sensing material that is disposed on at least a portion of the transducer. The sensing material is configured to simultaneously exhibit a capacitance response and a resistance response in the presence of a gaseous agent. The sensor may be reversible, battery free, and may require no electrical contact with a sensor reader.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: June 13, 2017
    Assignee: General Electricity Company
    Inventors: Radislav Alexandrovich Potyrailo, Zhexiong Tang, Brandon Bartling, Nandini Nagraj, Vadim Bromberg
  • Publication number: 20160187280
    Abstract: A sensor for detecting gaseous agents has a transducer, which includes an electrical resonant circuit that forms an antenna. The sensor further includes a sensing material that is disposed on at least a portion of the transducer. The sensing material is configured to simultaneously exhibit a capacitance response and a resistance response in the presence of a gaseous agent. The sensor may be reversible, battery free, and may require no electrical contact with a sensor reader.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 30, 2016
    Inventors: Radislav Alexandrovich Potyralio, Zhexiong Tang, Brandon Bartling, Nandini Nagraj, Vadim Bromberg
  • Publication number: 20160168715
    Abstract: Aqueous dispersions of artificially synthesized, mussel-inspired polyopamine nanoparticles were inkjet printed on flexible polyethylene terephthalate (PET) substrates. Narrow line patterns (4 ?m in width) of polydopamine resulted due to evaporatively driven transport (coffee ring effect). The printed patterns were metallized via a site-selective Cu electroless plating process at a controlled temperature (30° C.) for varied bath times. The lowest electrical resistivity value of the plated Cu lines was about 6 times greater than the bulk resistivity of Cu. This process presents an industrially viable way to fabricate Cu conductive fine patterns for flexible electronics at low temperature, and low cost.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Inventors: Siyuan Ma, Liang Liu, Vadim Bromberg, Timothy Singler