Patents by Inventor Vahit Atakan

Vahit Atakan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160168720
    Abstract: The invention provides novel methods for anticorrosive protection of iron or steel surfaces, such as on embedded iron or steel reinforcement components in composite materials and on steel surfaces of piles and vessels. The unique siderite coating formed during a carbonation curing possesses excellent anticorrosive properties and is suitable for improving the overall service life of coated objects.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 16, 2016
    Inventors: Jitendra Jain, Vahit Atakan
  • Patent number: 9266147
    Abstract: A method of producing a monolithic ceramic body from a porous matrix includes providing a porous matrix having interstitial spaces, providing an infiltrating medium comprising a solvent and at least one reactive species, and infiltrating at least a portion of the interstitial space of the porous matrix with the infiltrating medium. The solvent is an inert medium that is not chemically reactive with the porous matrix, and is in a liquid phase when in the portion of the interstitial space of the porous matrix. The infiltrating medium is mechanically convected through the porous matrix. The at least one reactive species, when in a portion of the interstitial space of the porous matrix, reacts with a portion of the porous matrix to form a product, and the product fills at least a portion of the interstitial space.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 23, 2016
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Richard E. Riman, Vahit Atakan, John P. Kuppler, Kenneth M. Smith
  • Publication number: 20160031757
    Abstract: The invention provides novel carbonatable calcium silicate compositions and carbonatable calcium silicate phases that are made from widely available, low cost raw materials by a process suitable for large-scale production. The method of the invention is flexible in equipment and production requirements and is readily adaptable to manufacturing facilities of conventional cement. The invention offers an exceptional capability to permanently and safely sequesters CO2.
    Type: Application
    Filed: August 3, 2015
    Publication date: February 4, 2016
    Inventors: Vahit Atakan, Sean Quinn, Sadananda Sahu, Deepak Ravikumar, Nicholas DeCristofaro
  • Patent number: 9221027
    Abstract: The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: December 29, 2015
    Assignee: SOLIDIA TECHNOLOGIES, INC.
    Inventors: John P. Kuppler, Vahit Atakan, Kenneth Smith, Xudong Hu
  • Patent number: 9216926
    Abstract: A method for producing a reaction product including at least one synthetic formulation that carbonates sufficiently, said method comprising: providing a first raw material, having a first concentration of M; providing a second raw material, having a second concentration of Me; and mixing the first raw material and the second raw material to produce a reaction product that includes at least one synthetic formulation having the general formula MaMebOc, MaMeb(OH)d, MaMebOc(OH)d or MaMebO(OH)d•(H2O)e, wherein M comprises at least one metal that can react to form a carbonate and Me is at least one element that can form an oxide during the carbonation reaction, wherein the at least one synthetic formulation is capable of undergoing a carbonation reaction, and wherein the at least one synthetic formulation is capable of undergoing volume change during the carbonation reaction.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 22, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard E Riman, Thomas E. Nye, Vahit Atakan, Cekdar Vakifahmetoglu, Qinghua Li, Ling Tang
  • Publication number: 20150336852
    Abstract: The invention encompasses equipment used to condition a recirculating gas stream in order to cure a CO2 Composite Material (CCM) and processes that use such equipment to cure the CCM. The gas conditioning equipment allows for a process that controls, reduces or eliminates the rate-limiting steps associated with water removal during the curing of a composite material. The equipment may include, but will not be limited to, control over the temperature, relative humidity, flow rate, pressure, and carbon dioxide concentration within the system; which includes the conditioning equipment, any vessel containing the CCM, and the material itself. Flow rate control can be used as a means to achieve uniformity in both gas velocity and composition.
    Type: Application
    Filed: August 5, 2015
    Publication date: November 26, 2015
    Inventors: Devin Patten, Vahit Atakan, Daniel Castoro, Deepak Ravikumar, John Kuppler, Steven Jensen, Mark Scantlebury, Kenneth Michael Smith, Jorge Mora, Emanuel Rojas, Tom Schuler, Alan Blacklock
  • Patent number: 9095815
    Abstract: A composition is produced by a hydrothermal liquid phase sintering process, and the process includes providing a porous matrix, the porous matrix having a shape, and allowing a component of the porous matrix to undergo a reaction with an infiltrating medium to form a first product, the infiltrating medium including a greenhouse gas, a remainder of the porous matrix acting as a scaffold for facilitating the formation of the first product. The composition includes the first product and the reminder of the porous matrix. The composition has a microstructure that resembles a net-like interconnecting network. The composition maintains the shape of the porous matrix. The composition is free of hydraulic bonds.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: August 4, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard E. Riman, Vahit Atakan
  • Publication number: 20150056437
    Abstract: The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventors: Omkar Deo, David Vuong, Deepak Ravikumar, Sadananda Sahu, Vahit Atakan
  • Publication number: 20140363665
    Abstract: The invention provides novel pervious composite materials that possess excellent physical and performance characteristics of conventional pervious concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Inventors: John Kuppler, Devin Patten, Deepak Ravikumar, Omkar Deo, Vahit Atakan
  • Publication number: 20140322083
    Abstract: The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 30, 2014
    Applicant: Solidia Technologies, Inc.
    Inventors: John P. Kuppler, Vahit Atakan, Kenneth Smith, Xudong Hu
  • Publication number: 20140314990
    Abstract: The invention provides novel paving stones and construction block composite materials and methods for preparation thereof. The paving stones and construction block composite materials can be readily produced from widely available, low cost precursor materials by a production process that involves compacting in a mold that is suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which can comprise silicon dioxide-rich materials. Additives can include calcium carbonate-rich and magnesium carbonate-rich materials. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide).
    Type: Application
    Filed: March 13, 2014
    Publication date: October 23, 2014
    Applicant: SOLIDIA TECHNOLOGIES, INC.
    Inventors: Francis Henn, Deepak Ravikumar, John P. Kuppler, Kenneth Smith, Oguzhan Oflaz, Dawid Zambrzycki, Vahit Atakan
  • Publication number: 20140308507
    Abstract: A composition is produced by a hydrothermal liquid phase sintering process, and the process includes providing a porous matrix, the porous matrix having a shape, and allowing a component of the porous matrix to undergo a reaction with an infiltrating medium to form a first product, the infiltrating medium including a greenhouse gas, a remainder of the porous matrix acting as a scaffold for facilitating the formation of the first product. The composition includes the first product and the reminder of the porous matrix. The composition has a microstructure that resembles a net-like interconnecting network. The composition maintains the shape of the porous matrix. The composition is free of hydraulic bonds.
    Type: Application
    Filed: May 12, 2014
    Publication date: October 16, 2014
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Richard E. RIMAN, Vahit ATAKAN
  • Publication number: 20140272216
    Abstract: The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Omkar Deo, Vahit Atakan, Deepak Ravikumar, Xudong Hu, Sadananda Sahu, Surojit Gupta, Richard Riman
  • Patent number: 8721784
    Abstract: A method of sequestering a greenhouse gas is described, which comprises: (i) providing a solution carrying a first reagent that is capable of reacting with a greenhouse gas; (ii) contacting the solution with a greenhouse gas under conditions that promote a reaction between the at least first reagent and the greenhouse gas to produce at least a first reactant; (iii) providing a porous matrix having interstitial spaces and comprising at least a second reactant; (iv) allowing a solution carrying the at least first reactant to infiltrate at least a substantial portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (v) allowing the at least first product to form and fill at least a portion of the interior spaces of the porous matrix, thereby sequestering a greenhouse gas.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: May 13, 2014
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard E. Riman, Vahit Atakan
  • Patent number: 8709960
    Abstract: Provided here is a method of producing a monolithic body from a porous matrix, comprising: (i) providing a porous matrix having interstitial spaces and comprising at least a first reactant; (ii) contacting the porous matrix with an infiltrating medium that carries at least a second reactant; (iii) allowing the infiltrating medium to infiltrate at least a portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (iv) allowing the at least first product to form and fill at least a portion of the interstitial spaces of the porous matrix, thereby producing a monolithic body, wherein the monolithic body does not comprise barium titanate.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: April 29, 2014
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard E. Riman, Vahit Atakan
  • Publication number: 20140093659
    Abstract: A method of producing a monolithic ceramic body from a porous matrix includes providing a porous matrix having interstitial spaces, providing an infiltrating medium comprising a solvent and at least one reactive species, and infiltrating at least a portion of the interstitial space of the porous matrix with the infiltrating medium. The solvent is an inert medium that is not chemically reactive with the porous matrix, and is in a liquid phase when in the portion of the interstitial space of the porous matrix. The infiltrating medium is mechanically convected through the porous matrix. The at least one reactive species, when in a portion of the interstitial space of the porous matrix, reacts with a portion of the porous matrix to form a product, and the product fills at least a portion of the interstitial space.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Richard E. RIMAN, Vahit ATAKAN, John P. KUPPLER, Kenneth M. SMITH
  • Publication number: 20130122267
    Abstract: A bonding element, a bonding element matrix and composite materials with a wide range of attractive properties that may be optimized, including, but not limited to, mechanical properties, thermal properties, magnetic properties, optical properties and nuclear properties, as a result of a first layer and second layer structure or core, first layer, and second layer structure of the bonding elements, as well as methods for making the bonding elements and the corresponding ceramic and/or composite materials.
    Type: Application
    Filed: March 2, 2012
    Publication date: May 16, 2013
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Richard E. RIMAN, Surojit GUPTA, Vahit ATAKAN, Qinghua LI
  • Publication number: 20120312194
    Abstract: A method for producing a reaction product including at least one synthetic formulation that carbonates sufficiently, said method comprising: providing a first raw material, having a first concentration of M; providing a second raw material, having a second concentration of Me; and mixing the first raw material and the second raw material to produce a reaction product that includes at least one synthetic formulation having the general formula MaMebOc, MaMeb(OH)d, MaMebOc(OH)d or MaMebO(OH)d.(H2O)e, wherein M comprises at least one metal that can react to form a carbonate and Me is at least one element that can form an oxide during the carbonation reaction, wherein the at least one synthetic formulation is capable of undergoing a carbonation reaction, and wherein the at least one synthetic formulation is capable of undergoing volume change during the carbonation reaction.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Richard E. RIMAN, Thomas E. NYE, Vahit ATAKAN, Cekdar VAKIFAHMETOGLU, Qinghua LI, Ling TANG
  • Patent number: 8313802
    Abstract: Provided here is a method of producing a monolithic body from a porous matrix, comprising: (i) providing a porous matrix having interstitial spaces and comprising at least a first reactant; (ii) contacting the porous matrix with an infiltrating medium that carries at least a second reactant; (iii) allowing the infiltrating medium to infiltrate at least a portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (iv) allowing the at least first product to form and fill at least a portion of the interstitial spaces of the porous matrix, thereby producing a monolithic body, wherein the monolithic body does not comprise barium titanate.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: November 20, 2012
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard E. Riman, Vahit Atakan
  • Patent number: 8114367
    Abstract: A method of sequestering a greenhouse gas is described, which comprises: (i) providing a solution carrying a first reagent that is capable of reacting with a greenhouse gas; (ii) contacting the solution with a greenhouse gas under conditions that promote a reaction between the at least first reagent and the greenhouse gas to produce at least a first reactant; (iii) providing a porous matrix having interstitial spaces and comprising at least a second reactant; (iv) allowing a solution carrying the at least first reactant to infiltrate at least a substantial portion of the interstitial spaces of the porous matrix under conditions that promote a reaction between the at least first reactant and the at least second reactant to provide at least a first product; and (v) allowing the at least first product to form and fill at least a portion of the interior spaces of the porous matrix, thereby sequestering a greenhouse gas.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: February 14, 2012
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Richard E. Riman, Vahit Atakan