Patents by Inventor Valentina Taviani

Valentina Taviani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10884086
    Abstract: Systems and methods for accelerated multi-contrast PROPELLER are disclosed herein. K-space is sampled in a rotating fashion using a plurality of radially directed blades around a center of k-space. A first subset of blades is acquired for a first contrast and a second subset of blades is acquired for a second contrasts. The first subset of blades is combined with high frequency components of the second subset of blades to produce an image of the first contrast. And the second subset of blades are combined with high frequency components of the first subset of blades to produce an image of the second contrast.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 5, 2021
    Assignee: GE Precision Healthcare LLC
    Inventors: Ali Ersoz, Ajeetkumar Gaddipati, Dawei Gui, Valentina Taviani, Zachary W Slavens
  • Patent number: 10520573
    Abstract: A method for performing wave-encoded magnetic resonance imaging of an object is provided. The method includes applying one or more wave-encoded magnetic gradients to the object, and acquiring MR signals from the object. The method further includes calibrating a wave point-spread function, and reconstructing an image from the MR signals based at least in part on the calibrated wave point-spread function. Calibration of the wave point-spread function is based at least in part on one or more intermediate images generated from the MR signals.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: December 31, 2019
    Assignees: GENERAL ELECTRIC COMPANY, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Feiyu Chen, Tao Zhang, Joseph Y. Cheng, Valentina Taviani, Brian Hargreaves, John Pauly, Shreyas Vasanawala
  • Patent number: 10369385
    Abstract: A method for providing at least one measurement by a magnetic resonance imaging (MRI) system of a tissue property or underlying tissue property in a region sufficiently close to a metal object, so that the metal object induces artifacts is provided. At least one magnetic resonance imaging signal from the region is acquired through the MRI system. The acquired at least one MRI signal is processed to correct for artifacts induced by the metal object. At least one tissue property or underlying tissue property measurement is extracted from the processed at least one MRI signal.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hans Weber, Daehyun Yoon, Valentina Taviani, Brian A. Hargreaves
  • Patent number: 10114099
    Abstract: A method for magnetic resonance imaging is provided that includes using a magnetic resonance imaging system to excite a field of view (FOV) for a target being imaged, using an excitation plan to limit the excited FOV to a relatively narrow band of magnetization, exciting multiple bands of magnetization simultaneously, applying phase encoding along a shortest FOV dimension, acquiring a signal from said simultaneously excited bands of magnetization, and reconstructing and outputting a target image from the acquired signal.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 30, 2018
    Assignees: The Board of Trustees of the Leland Stanford Junior University, General Electric Company
    Inventors: Valentina Taviani, Brian A. Hargreaves, Bruce L Daniel, Shreyas S Vasanawala, Suchandrima Banerjee
  • Publication number: 20180143277
    Abstract: A method for performing wave-encoded magnetic resonance imaging of an object is provided. The method includes applying one or more wave-encoded magnetic gradients to the object, and acquiring MR signals from the object. The method further includes calibrating a wave point-spread function, and reconstructing an image from the MR signals based at least in part on the calibrated wave point-spread function. Calibration of the wave point-spread function is based at least in part on one or more intermediate images generated from the MR signals.
    Type: Application
    Filed: April 7, 2017
    Publication date: May 24, 2018
    Applicants: GENERAL ELECTRIC COMPANY, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: FEIYU CHEN, TAO ZHANG, JOSEPH Y. CHENG, VALENTINA TAVIANI, BRIAN HARGREAVES, JOHN PAULY, SHREYAS VASANAWALA
  • Publication number: 20160306021
    Abstract: A method for providing at least one measurement by a magnetic resonance imaging (MRI) system of a tissue property or underlying tissue property in a region sufficiently close to a metal object, so that the metal object induces artifacts is provided. At least one magnetic resonance imaging signal from the region is acquired through the MRI system. The acquired at least one MRI signal is processed to correct for artifacts induced by the metal object. At least one tissue property or underlying tissue property measurement is extracted from the processed at least one MRI signal.
    Type: Application
    Filed: April 14, 2015
    Publication date: October 20, 2016
    Inventors: Hans WEBER, Daehyun YOON, Valentina TAVIANI, Brian A. HARGREAVES
  • Publication number: 20160231409
    Abstract: A method for magnetic resonance imaging is provided that includes using a magnetic resonance imaging system to excite a field of view (FOV) for a target being imaged, using an excitation plan to limit the excited FOV to a relatively narrow band of magnetization, exciting multiple bands of magnetization simultaneously, applying phase encoding along a shortest FOV dimension, acquiring a signal from said simultaneously excited bands of magnetization, and reconstructing and outputting a target image from the acquired signal.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Valentina Taviani, Brian A. Hargreaves, Bruce L. Daniel, Shreyas S. Vasanawala, Suchandrima Banerjee
  • Patent number: 9329250
    Abstract: Described here is a system and method for estimating apparent transverse relaxation rate, R2*, while simultaneously performing chemical species separation (e.g., water-fat separation) using magnetic resonance imaging (“MRI”). A homodyne reconstruction of k-space datasets acquired using a partial k-space acquisition is used and the chemical species separation of the resultant images takes into account the spectral complexity of the chemical species in addition to magnetic resonance signal decay associated with transverse relaxation. Full resolution maps of R2* are thus capable of being produced while also allowing for the production of images depicting the separated chemical species that are corrected for transverse relaxation associated signal decays.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 3, 2016
    Assignee: Wisconsin Alumni Resesarch Foundation
    Inventors: Valentina Taviani, Diego Hernando, Scott Brian Reeder
  • Publication number: 20140266192
    Abstract: Described here is a system and method for estimating apparent transverse relaxation rate, R2*, while simultaneously performing chemical species separation (e.g., water-fat separation) using magnetic resonance imaging (“MRI”). A homodyne reconstruction of k-space datasets acquired using a partial k-space acquisition is used and the chemical species separation of the resultant images takes into account the spectral complexity of the chemical species in addition to magnetic resonance signal decay associated with transverse relaxation. Full resolution maps of R2* are thus capable of being produced while also allowing for the production of images depicting the separated chemical species that are corrected for transverse relaxation associated signal decays.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Valentina Taviani, Diego Hernando, Scott Brian Reeder