Patents by Inventor Valerie M. Farrugia

Valerie M. Farrugia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210070953
    Abstract: Melt emulsification may be employed to form elastomeric particulates in a narrow size range when nanoparticles are included as an emulsion stabilizer. Such processes may comprise combining a polyurethane polymer and nanoparticles with a carrier fluid at a heating temperature at or above a melting point or a softening temperature of the polyurethane polymer, applying sufficient shear to disperse the polyurethane polymer as liquefied droplets in the presence of the nanoparticles in the carrier fluid at the heating temperature, cooling the carrier fluid at least until elastomeric particulates in a solidified state form, and separating the elastomeric particulates from the carrier fluid. In the elastomeric particulates, the polyurethane polymer defines a core and an outer surface of the elastomeric particulates and the nanoparticles are associated with the outer surface. The elastomeric particulates may have a D50 of about 1 ?m to about 1,000 ?m.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Cristina Resetco, Shivanthi Easwari Sriskandha, Edward G. Zwartz, Michael S. Hawkins, Valerie M. Farrugia
  • Publication number: 20210069958
    Abstract: A method of making thermoplastic polymer particles may include mixing in an extruder a mixture comprising a thermoplastic polymer and a carrier fluid that is immiscible with the thermoplastic polymer at a temperature greater than a melting point or softening temperature of the thermoplastic polymer and at a shear rate sufficiently high to disperse the thermoplastic polymer in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the thermoplastic polymer to form solidified particles comprising thermoplastic polymer particles having a circularity of 0.90 or greater and that comprise the thermoplastic polymer; and separating the solidified particles from the carrier fluid.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Valerie M. Farrugia, Michael S. Hawkins, David John William Lawton, Carolyn Patricia Moorlag
  • Publication number: 20210070938
    Abstract: A nonlimiting example method for synthesizing a pigment-pendent polyamide (PP-polyamide) may comprise: functionalizing metal oxide particles bound to a pigment particle with a compound having an epoxy to produce a surface treated pigment having a pendent epoxy; and reacting the pendent epoxy with a polyamide to yield the PP-polyamide. Another nonlimiting example method for synthesizing a PP-polyamide may comprise: functionalizing metal oxide particles bound to a pigment particle with a silica particle having a carboxylic acid surface treatment to produce a surface treated pigment having a pendent carboxylic acid; converting the pendent carboxylic acid to a pendent acid chloride; and reacting the pendent acid chloride with a polyamide to yield the PP-polyamide.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Valerie M. Farrugia, Karen A. Moffat
  • Publication number: 20210070992
    Abstract: A nonlimiting example method of forming polyamide polymer particles having pigments therein may comprising: mixing a mixture comprising a polyamide having a pigment pendent from a backbone of the polyamide (PP-polyamide), a carrier fluid that is immiscible with the PP-polyamide, and optionally an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the PP-polyamide and at a shear rate sufficiently high to disperse the PP-polyamide in the carrier fluid; and cooling the mixture to below the melting point or softening temperature of the PP-polyamide to form solidified particles comprising the PP-polyamide and, when present, the emulsion stabilizer associated with an outer surface of the solidified particles. Said solidified particles may be used in additive manufacturing to make a variety of objects like containers, toys, furniture parts and decorative home goods, plastic gears, automotive parts, medical items, and the like.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Karen A. Moffat, Valerie M. Farrugia
  • Publication number: 20210069935
    Abstract: Optical absorber-containing thermoplastic polymer particles (OACTP particles) may be produced by methods that comprise: mixing a mixture comprising a thermoplastic polymer, a carrier fluid that is immiscible with the thermoplastic polymer, and optionally an emulsion stabilizer at a temperature greater than a melting point or softening temperature of the thermoplastic polymer and at a shear rate sufficiently high to disperse the thermoplastic polymer in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the thermoplastic polymer to form solidified particles comprising the thermoplastic polymer; separating the solidified particles from the carrier fluid; and exposing the solidified particles to an optical absorber to produce the OACTP particles.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Valerie M. Farrugia, Mihaela Maria Birau
  • Publication number: 20210070954
    Abstract: A method of producing thermoplastic particles may comprise: mixing a melt emulsion comprising (a) a continuous phase that comprises a carrier fluid having a polarity Hansen solubility parameter (dP) of about 7 MPa0.5 or less, (b) a dispersed phase that comprises a dispersing fluid having a dP of about 8 MPa0.5 or more, and (c) an inner phase that comprises a thermoplastic polyester at a temperature greater than a melting point or softening temperature of the thermoplastic polyester and at a shear rate sufficiently high to disperse the thermoplastic polyester in the dispersed phase; and cooling the melt emulsion to below the melting point or softening temperature of the thermoplastic polyester to form solidified particles comprising the thermoplastic polyester.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Hojjat Seyed Jamali, Valerie M. Farrugia
  • Publication number: 20210070936
    Abstract: A method for producing polyamide particles may include: mixing a mixture comprising a polyamide, a carrier fluid that is immiscible with the polyamide, and nanoparticles at a temperature greater than a melting point or softening temperature of the polyamide and at a shear rate sufficiently high to disperse the polyamide in the carrier fluid; cooling the mixture to below the melting point or softening temperature of the polyamide to form solidified particles comprising polyamide particles having a circularity of 0.90 or greater and that comprise the polyamide and the nanoparticles associated with an outer surface of the polyamide particles; and separating the solidified particles from the carrier fluid.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Valerie M. Farrugia, Yulin Wang, Chu Yin Huang, Carolyn Patricia Moorlag
  • Publication number: 20210070937
    Abstract: Methods for producing a polyamide having an optical absorber pendent from the polyamide's backbone (OAMB-polyamide) may comprise: esterifying a hydroxyl-pendent optical absorber with a halogen-terminal aliphatic acid to yield a halogen-terminal alkyl-optical absorber; and N-alkylating a polyamide with the halogen-terminal alkyl-optical absorber to yield the OAMB-polyamide. Other methods for producing an OAMB-polyamide may comprise: esterifying a carboxyl-pendent optical absorber with a halogen-terminal aliphatic alcohol to yield a halogen-terminal alkyl-optical absorber; and N-alkylating a polyamide with the modified optical absorber to yield a polyamide having the OAMB-polyamide.
    Type: Application
    Filed: June 30, 2020
    Publication date: March 11, 2021
    Applicant: Xerox Corporation
    Inventors: Mihaela Maria Birau, Valerie M. Farrugia
  • Publication number: 20210060867
    Abstract: The present teachings according to various embodiments provides a support material for 3D printing. The support material includes poly(alkylene carbonate) having a decomposition temperature of from 100° C. to about 300° C.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Carolyn P. Moorlag, Nan-Xing Hu, Valerie M. Farrugia
  • Patent number: 10828838
    Abstract: The present teachings according to various embodiments provides a support material for 3D printing. The support material includes poly(alkylene carbonate) having a decomposition temperature of from 100 ° C. to about 300 ° C.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: November 10, 2020
    Assignee: Xerox Corporation
    Inventors: Carolyn P. Moorlag, Nan-Xing Hu, Valerie M. Farrugia
  • Publication number: 20200325284
    Abstract: A method for producing polysulfone micro-particles for 3D printing disclosed. For example, the method includes creating a mixture of polysulfone by dissolving polysulfone in an organic solvent, creating an aqueous solution of a polymeric stabilizer or a surfactant, adding the mixture of polysulfone to the aqueous solution to create a polysulfone solution, and processing the polysulfone solution to obtain polysulfone micro-particles having a desired particle size, a desired particle size distribution, and a desired shape.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Inventors: Valerie M. Farrugia, Edward G. Zwartz, Sandra J. Gardner
  • Publication number: 20200308348
    Abstract: A material for three-dimensional printing including at least one of a functionalized silicone polymer, a functionalized silica particle, or a combination thereof; wherein the functionalized silicone polymer is functionalized with a member of the group consisting of a carboxylic acid, an amine, and combinations thereof; and wherein the functionalized silica particle is functionalized with a member of the group consisting of a carboxylic acid, an amine, and combinations thereof. A process for preparing the three-dimensional printing material. A process for three-dimensional printing use of the material.
    Type: Application
    Filed: March 26, 2019
    Publication date: October 1, 2020
    Inventors: Cristina Resetco, Valerie M. Farrugia
  • Publication number: 20200283641
    Abstract: Described herein is a powder coating that includes a plurality of particles. The plurality of particles includes amorphous polyester and iron oxide pigment, wherein the plurality of particles have a size of from 5 microns to 250 microns, and wherein the plurality of particles each have a circularity of from about 0.93 to about 0.999. A method of manufacturing the particles is also disclosed.
    Type: Application
    Filed: March 4, 2019
    Publication date: September 10, 2020
    Inventors: Valerie M. Farrugia, Sandra J. Gardner
  • Patent number: 10703859
    Abstract: A composition for use in 3D printing includes an unsaturated polyester resin including an ethylenically unsaturated monomer, a first diol monomer and a second diol monomer.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: July 7, 2020
    Assignee: XEROX CORPORATION
    Inventors: Shivanthi E. Sriskandha, Valerie M. Farrugia, Guerino G. Sacripante, Edward G. Zwartz
  • Patent number: 10684280
    Abstract: A toner composite material includes toner particles that include a sulfonated polyester and a wax and metal nanoparticles disposed on the surface of the toner particles. A method includes providing such toner composite materials, fusing the material to a substrate and covalently linking a ligand to the surface of the silver nanoparticles via a thiol, carboxylate, or amine functional group. Detection strips include a substrate and such toner composite materials fused on the substrate.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 16, 2020
    Assignee: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Wendy Chi, Sandra J. Gardner
  • Patent number: 10675862
    Abstract: An aqueous sacrificial coating composition for an image transfer member in an aqueous ink imaging system is provided. The sacrificial coating composition may include at least one polymer, at least one selected from (i) at least one chain extender, or (ii) a reactive elastomeric latex, wherein the at least one chain extender comprises a species capable of linking linear chains or chain segments of the reactive elastomeric latex, at least one hygroscopic plasticizer, and at least one surfactant.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: June 9, 2020
    Assignee: XEROX CORPORATION
    Inventors: Guiqin Song, Marcel P. Breton, Valerie M. Farrugia, James D. Mayo
  • Patent number: 10655025
    Abstract: A process for producing unsaturated polyester microparticles comprising: melt-mixing an unsaturated polyester and an oil in an extruder; washing the microparticles with an organic solvent to reduce the amount of oil; and removing the organic solvent to form the microparticles.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: May 19, 2020
    Assignee: XEROX CORPORATION
    Inventors: Valerie M. Farrugia, Michael S. Hawkins, Guerino G. Sacripante, Edward G. Zwartz
  • Patent number: 10649355
    Abstract: A method of making a composite feed material for fused deposition modeling (FDM) is disclosed. The method comprises providing composite particles made by a process of emulsion aggregation, the composite particles comprising at least one thermoplastic polymer and at least one carbon particle material. A composite feed material is formed for fused deposition modeling from the composite particles. The composite feed material is in a form selected from a filament and a paste.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: May 12, 2020
    Assignee: XEROX CORPORATION
    Inventors: Barkev Keoshkerian, Rachel Prestayko, Kimberly D. Nosella, Valerie M. Farrugia
  • Publication number: 20200102427
    Abstract: A process including combining polystyrene and a first solvent to form a polystyrene solution; heating the polystyrene solution; adding a second solvent to the polystyrene solution with optional stirring whereby polystyrene microparticles are formed via microprecipitation; optionally, cooling the formed polystyrene microparticles in solution; and optionally, removing the first solvent and second solvent. A polystyrene microparticle formed by a microprecipitation process, wherein the polystyrene particle has a spherical morphology, a particle diameter of greater than about 10 micrometers, and a weight average molecular weight of from about 38,000 to about 200,000 Daltons. A method of selective laser sintering including providing polystyrene microparticles formed by a microprecipitation process; and exposing the microparticles to a laser to fuse the microparticles.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 2, 2020
    Inventors: Valerie M. Farrugia, Edward G. Zwartz, Sandra J. Gardner
  • Publication number: 20200079026
    Abstract: The present teachings according to various embodiments provides a support material for 3D printing. The support material includes poly(alkylene carbonate) having a decomposition temperature of from 100 ° C. to about 300 ° C.
    Type: Application
    Filed: September 6, 2018
    Publication date: March 12, 2020
    Inventors: Carolyn P. Moorlag, Nan-Xing Hu, Valerie M. Farrugia