Patents by Inventor Valery G. Telfort

Valery G. Telfort has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150196270
    Abstract: An acoustic sensor is configured to provide accurate and robust measurement of bodily sounds under a variety of conditions, such as in noisy environments or in situations in which stress, strain, or movement may be imparted onto a sensor with respect to a patient. Embodiments of the sensor provide a conformable electrical shielding, as well as improved acoustic and mechanical coupling between the sensor and the measurement site.
    Type: Application
    Filed: March 27, 2015
    Publication date: July 16, 2015
    Inventors: Valery G. Telfort, Predrag Pudar, Dimitar Dimitrov, Phi Trang, Ammar Al-Ali
  • Patent number: 9028429
    Abstract: An acoustic sensor is configured to provide accurate and robust measurement of bodily sounds under a variety of conditions, such as in noisy environments or in situations in which stress, strain, or movement may be imparted onto a sensor with respect to a patient. Embodiments of the sensor provide a conformable electrical shielding, as well as improved acoustic and mechanical coupling between the sensor and the measurement site.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: May 12, 2015
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Predrag Pudar, Dimitar Dimitrov, Phi Trang, Ammar Al-Ali
  • Publication number: 20150032029
    Abstract: A physiological monitor is provided for determining a physiological parameter of a medical patient with a multi-stage sensor assembly. The monitor includes a signal processor configured to receive a signal indicative of a physiological parameter of a medical patient from a multi-stage sensor assembly. The multi-stage sensor assembly is configured to be attached to the physiological monitor and the medical patient. The monitor of certain embodiments also includes an information element query module configured to obtain calibration information from an information element provided in a plurality of stages of the multi-stage sensor assembly. In some embodiments, the signal processor is configured to determine the physiological parameter of the medical patient based upon said signal and said calibration information.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 29, 2015
    Inventors: Ammar Al-Ali, Walter M. Weber, Valery G. Telfort
  • Publication number: 20140309559
    Abstract: An acoustic sensor is configured to provide accurate and robust measurement of bodily sounds under a variety of conditions, such as in noisy environments or in situations in which stress, strain, or movement may be imparted onto a sensor with respect to a patient. Embodiments of the sensor provide a conformable electrical shielding, as well as improved acoustic and mechanical coupling between the sensor and the measurement site.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 16, 2014
    Applicant: Masimo Corporation
    Inventors: Valery G. Telfort, Predrag Pudar, Dimitar Dimitrov, Phi Trang, Ammar Al-Ali
  • Publication number: 20140303520
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Inventors: Valery G. Telfort, Dimitar Dimitrov, Phi Trang
  • Patent number: 8801613
    Abstract: A physiological monitor is provided for determining a physiological parameter of a medical patient with a multi-stage sensor assembly. The monitor includes a signal processor configured to receive a signal indicative of a physiological parameter of a medical patient from a multi-stage sensor assembly. The multi-stage sensor assembly is configured to be attached to the physiological monitor and the medical patient. The monitor of certain embodiments also includes an information element query module configured to obtain calibration information from an information element provided in a plurality of stages of the multi-stage sensor assembly. In some embodiments, the signal processor is configured to determine the physiological parameter of the medical patient based upon said signal and said calibration information.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 12, 2014
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Walter M. Weber, Valery G. Telfort
  • Patent number: 8771204
    Abstract: An acoustic sensor is configured to provide accurate and robust measurement of bodily sounds under a variety of conditions, such as in noisy environments or in situations in which stress, strain, or movement may be imparted onto a sensor with respect to a patient. Embodiments of the sensor provide a conformable electrical shielding, as well as improved acoustic and mechanical coupling between the sensor and the measurement site.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 8, 2014
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Predrag Pudar, Dimitar Dimitrov, Phi Trang, Ammar Al-Ali
  • Patent number: 8755535
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: June 17, 2014
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Massi Joe E. Kiani
  • Patent number: 8740816
    Abstract: An acoustic sensor is configured to provide accurate and robust measurement of bodily sounds under a variety of conditions, such as in noisy environments or in situations in which stress, strain, or movement may be imparted onto a sensor with respect to a patient. Embodiments of the sensor provide a conformable electrical shielding, as well as improved acoustic and mechanical coupling between the sensor and the measurement site.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: June 3, 2014
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Predrag Pudar, Dimitar Dimitrov, Phi Trang, Ammar Al-Ali
  • Patent number: 8715206
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: May 6, 2014
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Anand Sampath
  • Patent number: 8702627
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: April 22, 2014
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Dimitar Dimitrov, Phi Trang
  • Patent number: 8690799
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: April 8, 2014
    Assignee: Masimo Corporation
    Inventors: Valery G. Telfort, Dimitar Dimitrov, Phi Trang, Massi Joe E. Kiani, Anand Sampath
  • Publication number: 20140081175
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 20, 2014
    Applicant: Masimo Corporation
    Inventor: Valery G. Telfort
  • Publication number: 20110213271
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 1, 2011
    Inventors: Valery G. Telfort, Dimitar Dimitrov, Phi Trang
  • Publication number: 20110213273
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 1, 2011
    Inventors: Valery G. Telfort, Dimitar Dimitrov, Phi Trang, Massi Joe E. Kiani, Anand Sampath
  • Publication number: 20110213274
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 1, 2011
    Inventors: Valery G. Telfort, Massi Joe E. Kiani
  • Publication number: 20110213272
    Abstract: According to certain described aspects, multiple acoustic sensing elements are employed in a variety of beneficial ways to provide improved physiological monitoring, among other advantages. In various embodiments, sensing elements can be advantageously employed in a single sensor package, in multiple sensor packages, and at a variety of other strategic locations in the monitoring environment. According to other aspects, to compensate for skin elasticity and attachment variability, an acoustic sensor support is provided that includes one or more pressure equalization pathways. The pathways can provide an air-flow channel from the cavity defined by the sensing elements and frame to the ambient air pressure.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 1, 2011
    Inventors: Valery G. Telfort, Anand Sampath
  • Publication number: 20110209915
    Abstract: A pulse oximetry system for reducing the risk of electric shock to a medical patient can include physiological sensors, at least one of which has a light emitter that can impinge light on body tissue of a living patient and a detector responsive to the light after attenuation by the body tissue. The detector can generate a signal indicative of a physiological characteristic of the living patient. The pulse oximetry system may also include a splitter cable that can connect the physiological sensors to a physiological monitor. The splitter cable may have a plurality of cable sections each including one or more electrical conductors that can interface with one of the physiological sensors. One or more decoupling circuits may be disposed in the splitter cable, which can be in communication with selected ones of the electrical conductors. The one or more decoupling circuits can electrically decouple the physiological sensors.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 1, 2011
    Applicant: MASIMO CORPORATION
    Inventors: Valery G. Telfort, Ammar Al-Ali, Robert A. Smith, Joel Fechter, Shaun Fetherson
  • Publication number: 20110196211
    Abstract: A physiological monitor is provided for determining a physiological parameter of a medical patient with a multi-stage sensor assembly. The monitor includes a signal processor configured to receive a signal indicative of a physiological parameter of a medical patient from a multi-stage sensor assembly. The multi-stage sensor assembly is configured to be attached to the physiological monitor and the medical patient. The monitor of certain embodiments also includes an information element query module configured to obtain calibration information from an information element provided in a plurality of stages of the multi-stage sensor assembly. In some embodiments, the signal processor is configured to determine the physiological parameter of the medical patient based upon said signal and said calibration information.
    Type: Application
    Filed: December 3, 2010
    Publication date: August 11, 2011
    Applicant: MASIMO Corporation
    Inventors: Ammar Al-Ali, Walter M. Weber, Valery G. Telfort
  • Publication number: 20110125060
    Abstract: An acoustic sensor is provided according to certain aspects for non-invasively detecting physiological acoustic vibrations indicative of one or more physiological parameters of a medical patient. The sensor can include an acoustic sensing element configured to generate a first signal in response to acoustic vibrations from a medical patient. The sensor can also include front-end circuitry configured to receive an input signal that is based at least in part on the first signal and to produce an amplified signal in response to the input signal. In some embodiments, the sensor further includes a compression module in communication with the front-end circuitry and configured to compress portions of at least one of the input signal and the amplified signal according to a first compression scheme, the compressed portions corresponding to portions of the first signal having a magnitude greater than a predetermined threshold level.
    Type: Application
    Filed: October 14, 2010
    Publication date: May 26, 2011
    Inventors: Valery G. Telfort, Mark Wylie