Patents by Inventor Vanessa Simoes

Vanessa Simoes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11624849
    Abstract: A method for estimating all five transversely-isotropic (TI)-elastic constants using borehole sonic data obtained from at least one subterranean borehole in a transversely isotropic formation. In an embodiment, the method includes: solving for a quasi-compressional qP-wave velocity VqP using inversion algorithms based on exact solutions of the Kelvin-Christoffel equations for plane wave velocities in arbitrarily anisotropic formations, where the five TI-elastic constants may include C11, C13, C33, C55, and C66.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: April 11, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Austin Boyd, Vanessa Simoes, Bikash Kumar Sinha, Smaine Zeroug, Anna Paula Lougon Duarte
  • Patent number: 11422280
    Abstract: A method for determining properties of a laminated formation traversed by a well or wellbore employs measured sonic data, resistivity data, and density data for an interval-of-interest within the well or wellbore. A formation model that describe properties of the laminated formation at the interval-of-interest is derived from the measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model represents the laminated formation at the interval-of-interest as first and second zones of different first and second rock types. The formation model is used to derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used to refine the formation model and determine properties of the formation at the interval-of-interest.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: August 23, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Sushil Shetty, Qiwei Zhan, Lin Liang, Austin Boyd, Smaine Zeroug, Vanessa Simoes, Fabio Cesar Canesin
  • Publication number: 20200096663
    Abstract: A method for determining properties of a laminated formation traversed by a well or wellbore employs measured sonic data, resistivity data, and density data for an interval-of-interest within the well or wellbore. A formation model that describe properties of the laminated formation at the interval-of-interest is derived from the measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model represents the laminated formation at the interval-of-interest as first and second zones of different first and second rock types. The formation model is used to derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used to refine the formation model and determine properties of the formation at the interval-of-interest.
    Type: Application
    Filed: April 23, 2018
    Publication date: March 26, 2020
    Inventors: Sushil Shetty, Qiwei Zhan, Lin Liang, Austin Boyd, Smaine Zeroug, Vanessa Simoes, Fabio Cesar Canesin
  • Publication number: 20190346581
    Abstract: A method for estimating all five transversely-isotropic (TI)-elastic constants using borehole sonic data obtained from at least one subterranean borehole in a transversely isotropic formation. In an embodiment, the method includes: solving for a quasi-compressional qP-wave velocity VqP using inversion algorithms based on exact solutions of the Kelvin-Christoffel equations for plane wave velocities in arbitrarily anisotropic formations, where the five TI-elastic constants may include C11, C13, C33, C55, and C66.
    Type: Application
    Filed: May 14, 2018
    Publication date: November 14, 2019
    Inventors: Austin Boyd, Vanessa Simoes, Bikash Kumar Sinha, Smaine Zeroug, Anna Paula Lougon Duarte
  • Patent number: 10365405
    Abstract: A computer-implemented method is provided for determining properties of a formation traversed by a well or wellbore. A formation model describing formation properties at an interval-of-interest within the well or wellbore is derived from measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model is used as input to a plurality of petrophysical transforms and corresponding tool response simulators that derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used by an inversion process to refine the formation model and determine properties of the formation at the interval-of-interest. In embodiments, properties of the formation may be radial profiles for porosity, water saturation, gas or oil saturation, or pore aspect ratio.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: July 30, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Sushil Shetty, Lin Liang, Tarek M. Habashy, Vanessa Simoes, Austin Boyd, Bikash K. Sinha, Smaine Zeroug
  • Publication number: 20170371072
    Abstract: A method for determining properties of a formation traversed by a well or wellbore employs measured sonic data, resistivity data, and density data for an interval-of-interest within the well or wellbore. A formation model that describe properties of the formation at the interval-of-interest is derived from the measured sonic data, resistivity data, and density data for the interval-of-interest. The formation model is used to derive simulated sonic data, resistivity data, and density data for the interval-of-interest. The measured sonic data, resistivity data, and density data for the interval-of-interest and the simulated sonic data, resistivity data, and density data for the interval-of-interest are used to refine the formation model and determine properties of the formation at the interval-of-interest.
    Type: Application
    Filed: January 25, 2016
    Publication date: December 28, 2017
    Inventors: Sushil Shetty, Lin Liang, Tarek M. Habashy, Vanessa Simoes, Austin Boyd, Bikash K. Sinha, Smaine Zeroug