Patents by Inventor Varouj Baghdasarian

Varouj Baghdasarian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124166
    Abstract: Technology is disclosed herein for preventing or at least significantly reducing shock to spacecraft such as satellites when releasing a hold-down rod assembly that clamps the spacecraft to, for example, a launch vehicle adaptor. The hold-down rod assembly has tension rods that may be pre-loaded at considerable tension in order to hold down a stack of spacecraft in a launch configuration. In an embodiment, pneumatic actuators are used to slowly release the tension in the tension rods. Therefore, shock to the spacecraft is prevented or at least significantly reduced.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 18, 2024
    Applicant: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Patent number: 11962272
    Abstract: A solar array structure for a spacecraft includes one or a pair of flexible blanket or other foldable solar arrays (such as flexible panels) and a deployable frame structure. The deployable frame structure includes a T-shaped yoke structure, a T-shaped end structure, and one or more rigid beams, the T-shaped yoke structure connectable to the spacecraft. When deployed, the frame structure tensions the flexible blanket solar array or arrays between the T-shaped yoke structure and the T-shaped end structure. When stowed, the flexible blanket solar array or arrays are folded in an accordion manner to form a stowed pack or packs between the cross-member arms of the T-shaped yoke structure and the T-shaped end structure, also stowed in its own Z-fold arrangement. The cross-member arms of the T-shaped end structure can include a solar array that can provide power before deployment while the flexible blanket solar array is stowed.
    Type: Grant
    Filed: August 11, 2022
    Date of Patent: April 16, 2024
    Assignee: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Patent number: 11912440
    Abstract: A solar array structure, such as for a spacecraft, uses thin solar array panels that, when in a stowed configuration, are stiffened by being bent or curved in one direction to be shaped like a section of a cylinder and placed within a rigid structural frame. As a curved solar panel is not as efficient as a flat panel directly facing the sun, the solar array panels are curved in their stowed configuration for launch only, but flatten after deployment by use of a partially flexible structural frame, where a rectangular frame is made of two opposing rigid sides and two opposing flexible sides, with a thin flexible solar panel attached to rigid sides only. The rigid sides are compressed during stowage to curve the panel before hold-down tensioning. The structure and panels return to their flat free state configuration after release.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: February 27, 2024
    Assignee: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Patent number: 11649075
    Abstract: Technology is disclosed herein for a spacecraft launch restraint and dispensing structure. The dispensing structure has a number of trusses and a central structure. When the trusses are in a support position, each spacecraft may be supported at one point by the central structure and at two points by one or more of the trusses. Therefore, each spacecraft may be supported at three points, thereby providing a stable support for each spacecraft. The spacecrafts do not touch each other and do not bear the weight of other spacecrafts. In a deployment position, the trusses extend away from the satellites and do not support the satellites; however, the satellites initially remain connected to the central structure. In the deployment position, the trusses are out of an ejection path such that the satellites can be ejected in a desired sequence from the central structure.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: May 16, 2023
    Assignee: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Publication number: 20230064039
    Abstract: A solar array structure, such as for a spacecraft, uses thin solar array panels that, when in a stowed configuration, are stiffened by being bent or curved in one direction to be shaped like a section of a cylinder and placed within a rigid structural frame. As a curved solar panel is not as efficient as a flat panel directly facing the sun, the solar array panels are curved in their stowed configuration for launch only, but flatten after deployment by use of a partially flexible structural frame, where a rectangular frame is made of two opposing rigid sides and two opposing flexible sides, with a thin flexible solar panel attached to rigid sides only. The rigid sides are compressed during stowage to curve the panel before hold-down tensioning. The structure and panels return to their flat free state configuration after release.
    Type: Application
    Filed: September 1, 2021
    Publication date: March 2, 2023
    Applicant: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Publication number: 20230062667
    Abstract: Technology is disclosed herein for a spacecraft launch restraint and dispensing structure. The dispensing structure has a number of trusses and a central structure. When the trusses are in a support position, each spacecraft may be supported at one point by the central structure and at two points by one or more of the trusses. Therefore, each spacecraft may be supported at three points, thereby providing a stable support for each spacecraft. The spacecrafts do not touch each other and do not bear the weight of other spacecrafts. In a deployment position, the trusses extend away from the satellites and do not support the satellites; however, the satellites initially remain connected to the central structure. In the deployment position, the trusses are out of an ejection path such that the satellites can be ejected in a desired sequence from the central structure.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 2, 2023
    Applicant: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Publication number: 20230061366
    Abstract: Technology is disclosed for a spacecraft launch restraint and dispensing structure. Stacks of spacecrafts may be arranged around a central post. The dispensing structure has primary tie-down mechanisms that axially clamp the stacks of spacecrafts when in a stowed position. Each primary tie-down mechanism may have a rod located between two adjacent stacks, such that the rod tensions two stacks. In a deployment position, the primary tie-down rods extend away from the stack such that an ejection path is cleared. The dispensing structure also includes secondary tie-down mechanisms that radially connect the spacecrafts to the central post. After the primary tie-down rods are moved to the deployment position, the secondary tie-down mechanisms still hold the spacecrafts. The spacecrafts may be deployed by issuing control signals to the secondary tie-down mechanisms when the primary tie-down rods are in the deployment position.
    Type: Application
    Filed: August 24, 2021
    Publication date: March 2, 2023
    Applicant: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Publication number: 20230050780
    Abstract: A solar array structure for a spacecraft includes one or a pair of flexible blanket or other foldable solar arrays and a deployable frame structure. The deployable frame structure includes a T-shaped yoke structure, a T-shaped end structure, and one or more rigid beams, the T-shaped yoke structure connectable to the spacecraft. When deployed, the frame structure tensions the flexible blanket solar array or arrays between the T-shaped yoke structure and the T-shaped end structure. When stowed, the flexible blanket solar array or arrays are folded in an accordion manner to form a stowed pack or packs between the cross-member arms of the T-shaped yoke structure and the T-shaped end structure, also stowed in its own Z-fold arrangement. The cross-member arms of the T-shaped end structure can include a solar array that can provide power before deployment while the flexible blanket solar array is stowed.
    Type: Application
    Filed: August 10, 2021
    Publication date: February 16, 2023
    Applicant: Maxar Space LLC
    Inventors: Varouj Baghdasarian, Michael Freestone
  • Publication number: 20230046563
    Abstract: A solar array structure for a spacecraft includes one or a pair of flexible blanket or other foldable solar arrays (such as flexible panels) and a deployable frame structure. The deployable frame structure includes a T-shaped yoke structure, a T-shaped end structure, and one or more rigid beams, the T-shaped yoke structure connectable to the spacecraft. When deployed, the frame structure tensions the flexible blanket solar array or arrays between the T-shaped yoke structure and the T-shaped end structure. When stowed, the flexible blanket solar array or arrays are folded in an accordion manner to form a stowed pack or packs between the cross-member arms of the T-shaped yoke structure and the T-shaped end structure, also stowed in its own Z-fold arrangement. The cross-member arms of the T-shaped end structure can include a solar array that can provide power before deployment while the flexible blanket solar array is stowed.
    Type: Application
    Filed: August 11, 2022
    Publication date: February 16, 2023
    Applicant: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Publication number: 20230049753
    Abstract: A solar array structure for a spacecraft includes one or a pair of flexible blanket or other foldable solar arrays and a deployable frame structure. The deployable frame structure includes a T-shaped yoke structure, a T-shaped end structure, and one or more rigid beams, the T-shaped yoke structure connectable to the spacecraft. When deployed, the frame structure tensions the flexible blanket solar array or arrays between the T-shaped yoke structure and the T-shaped end structure. When stowed, the flexible blanket solar array or arrays are folded in an accordion manner to form a stowed pack or packs between the cross-member arms of the T-shaped yoke structure and the T-shaped end structure, also stowed in its own Z-fold arrangement. The cross-member arms of the T-shaped end structure can include a solar array that can provide power before deployment while the flexible blanket solar array is stowed.
    Type: Application
    Filed: October 19, 2021
    Publication date: February 16, 2023
    Applicant: Maxar Space LLC
    Inventors: Michael Freestone, Varouj Baghdasarian
  • Patent number: 11577861
    Abstract: Technology is disclosed for a spacecraft launch restraint and dispensing structure. Stacks of spacecrafts may be arranged around a central post. The dispensing structure has primary tie-down mechanisms that axially clamp the stacks of spacecrafts when in a stowed position. Each primary tie-down mechanism may have a rod located between two adjacent stacks, such that the rod tensions two stacks. In a deployment position, the primary tie-down rods extend away from the stack such that an ejection path is cleared. The dispensing structure also includes secondary tie-down mechanisms that radially connect the spacecrafts to the central post. After the primary tie-down rods are moved to the deployment position, the secondary tie-down mechanisms still hold the spacecrafts. The spacecrafts may be deployed by issuing control signals to the secondary tie-down mechanisms when the primary tie-down rods are in the deployment position.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: February 14, 2023
    Assignee: Maxar Space LLC
    Inventor: Varouj Baghdasarian
  • Patent number: 9085377
    Abstract: Redundant fuse wire apparatus and redundant release devices, such as those used to release deployable appendages, such as solar array and reflectors disposed on satellites, and the like. An exemplary redundant release device comprises a restraint release mechanism having one or more restraint release arms, a redundant release device comprising a segmented spool having a plurality of segments that are constrained from separating by spring restraint tape releasably secured to the restraint release arms, a redundant fuse wire assembly comprising primary and redundant positive contacts, a common negative contact, primary and redundant fuse wires respectively connected between the primary positive and common negative contacts and the redundant positive and common negative contacts that respectively wrap around the opposed positive contact and the restraint release arms, and an electrical power source for heating and severing the fuse wires.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 21, 2015
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventor: Varouj Baghdasarian
  • Publication number: 20120293294
    Abstract: Redundant fuse wire apparatus and redundant release devices, such as those used to release deployable appendages, such as solar array and reflectors disposed on satellites, and the like. An exemplary redundant release device comprises a restraint release mechanism having one or more restraint release arms, a redundant release device comprising a segmented spool having a plurality of segments that are constrained from separating by spring restraint tape releasably secured to the restraint release arms, a redundant fuse wire assembly comprising primary and redundant positive contacts, a common negative contact, primary and redundant fuse wires respectively connected between the primary positive and common negative contacts and the redundant positive and common negative contacts that respectively wrap around the opposed positive contact and the restraint release arms, and an electrical power source for heating and severing the fuse wires.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 22, 2012
    Inventor: Varouj Baghdasarian
  • Patent number: 6010096
    Abstract: Self-latching deployment apparatus for a multi-paneled solar array comprises at least first and second in-line panels pivotally connected together for rotation about an in-line hinge axis between stowed and deployed positions. A first deployment and locking mechanism maintains the in-line panels in the deployed position. First and second side panels are pivotally attached to opposite edges of the second in-line panel for rotation between stowed and deployed positions about secondary and tertiary hinge axes, respectively, transverse to the in-line hinge axis between the first and second in-line panels. A first restraint mechanism is engaged with the first side panel to temporarily overpower a drive mechanism for the first side panel and thereby temporarily maintain the first side panel in the stowed position but becomes disengaged from the first side panel when the first and second in-line panels reach the deployed position to enable the first side panel to move to the deployed position.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: January 4, 2000
    Assignee: Space Systems/Loral, Inc.
    Inventor: Varouj Baghdasarian