Patents by Inventor Vasant R. Jadhav

Vasant R. Jadhav has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348904
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of gene expression and/or activity, and/or modulate a gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against target gene expression.
    Type: Application
    Filed: November 10, 2022
    Publication date: November 2, 2023
    Inventors: Brian Allen Carr, Vasant R. Jadhav, Denise M. Kenski, David M. Tellers, Aarron T. Willingham
  • Publication number: 20230304002
    Abstract: The present invention provides iRNA agents, e.g., double stranded iRNA agents, that target the transthyretin (TTR) gene and methods of using such iRNA agents for treating or preventing TTR-associated ocular diseases.
    Type: Application
    Filed: May 4, 2022
    Publication date: September 28, 2023
    Inventors: Jayaprakash K. Nair, Martin A. Maier, Vasant R. Jadhav, Mark Keating, Kevin Fitzgerald, Stuart Milstein, John R. Petrulis
  • Publication number: 20230287424
    Abstract: The disclosure relates to double stranded ribonucleic acid (dsRNAi) agents for administration by inhalation preferably targeting genes expressed in the respiratory system, as well as methods of inhibiting expression of a target gene after administration by inhalation, preferably a gene expressed in the respiratory system.
    Type: Application
    Filed: December 8, 2022
    Publication date: September 14, 2023
    Inventors: Christopher Brown, Donald Foster, Arlin Rogers, Vasant R. Jadhav, Akin Akinc, Amy R. Simon
  • Publication number: 20230256001
    Abstract: One aspect of the present invention relates to double-stranded RNA (dsRNA) agent capable of inhibiting the expression of a target gene. The antisense strand of the dsRNA molecule comprises at least one thermally destabilizing nucleotide occurring at a seed region; the dsRNA comprises at least four 2?-fluoro modifications, and the sense strand of the dsRNA molecule comprises ligand, wherein the ligand is an ASGPR ligand. Other aspects of the invention relate to pharmaceutical compositions comprising these dsRNA molecules suitable for therapeutic use, and methods of inhibiting the expression of a target gene by administering these dsRNA molecules, e.g., for the treatment of various disease conditions.
    Type: Application
    Filed: September 30, 2022
    Publication date: August 17, 2023
    Applicant: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Mark K. SCHLEGEL, Maja JANAS, Vasant R. JADHAV, Muthiah MANOHARAN, Kallanthottathil G. RAJEEV, Muthusamy JAYARAMAN, Alexander V. KEL'IN, Shigeo MATSUDA, Klaus CHARISSE, Jayaprakash K. NAIR, Martin A. MAIER, Alfica SEHGAL, Christopher BROWN, Christopher THEILE, Stuart MILSTEIN
  • Patent number: 11725207
    Abstract: The invention relates to RNAi agents, e.g., double stranded RNAi agents, targeting the Serpina1 gene, and methods of using such RNAi agents to inhibit expression of Serpina1 and methods of treating subjects having a Serpina1 associated disease, such as a liver disorder.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: August 15, 2023
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Mark K. Schlegel, Maja Janas, Vasant R. Jadhav, Donald Foster, Muthiah Manoharan, Kallanthottathil G. Rajeev, Alexander V. Kel'in, Klaus Charisse, Jayaprakash K. Nair, Martin A. Maier, Shigeo Matsuda, Muthusamy Jayaraman, Alfica Sehgal, Christopher Brown, Kevin Fitzgerald, Stuart Milstein
  • Patent number: 11725209
    Abstract: The invention relates to RNAi agents, e.g., double-stranded RNAi agents, targeting the TMPRSS6 gene, and methods of using such RNAi agents to inhibit expression of TMPRSS6 and methods of treating subjects having a TMPRSS6 associated disorder, e.g., an iron overload associated disorder, such as ?-thalassemia or hemochromatosis.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: August 15, 2023
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: James Butler, Martin A. Maier, Kevin Fitzgerald, Shannon Fishman, Donald Foster, Vasant R. Jadhav, Stuart Milstein
  • Publication number: 20230144623
    Abstract: The present invention provides methods comprising the in vivo delivery of small nucleic acid molecules capable of mediating RNA interference and reducing the expression of myostatin, wherein the small nucleic acid molecules are introduced to a subject by systemic administration. Specifically, the invention relates to methods comprising the in vivo delivery of short interfering nucleic acid (siNA) molecules that target a myostatin gene expressed by a subject, wherein the siNA molecule is conjugated to a lipophilic moiety, such as cholesterol. The myostatin siNA conjugates that are delivered as per the methods disclosed are useful to modulate the in vivo expression of myostatin, increase muscle mass and/or enhance muscle performance. Use of the disclosed methods is further indicated for treating musculoskeletal diseases or disorders and/or diseases or disorders that result in conditions in which muscle is adversely affected.
    Type: Application
    Filed: November 10, 2022
    Publication date: May 11, 2023
    Inventors: Marija Tadin-Strapps, Tayeba Khan, Walter Richard Strapps, Laura Sepp-Lorenzino, Vasant R. Jadhav, Duncan Brown
  • Publication number: 20230136787
    Abstract: The disclosure relates to double-stranded ribonucleic acid (dsRNA) compositions targeting VEGF-A, and methods of using such dsRNA compositions to alter (e.g., inhibit) expression of VEGF-A.
    Type: Application
    Filed: February 9, 2021
    Publication date: May 4, 2023
    Applicant: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: JAMES D. MCININCH, MARK KEATING, MARK K. SCHLEGEL, ADAM CASTORENO, VASANT R. JADHAV, CHARALAMBOS KAITTANIS, ELENA CASTELLANOS-RIZALDOS, BHAUMIK A. PANDYA
  • Publication number: 20230128522
    Abstract: The present disclosure relates to double stranded RNA agents targeting the hepatitis B virus (HBV) genome, and methods of using such agents to inhibit expression of one or more HBV genes and methods of treating subjects having an HBV infection or HBV-associated disorder, e.g., chronic hepatitis B infection.
    Type: Application
    Filed: September 28, 2022
    Publication date: April 27, 2023
    Inventors: Vasant R. JADHAV, Martin A. MAIER, Stuart MILSTEIN, Mark K. SCHLEGEL
  • Publication number: 20230022185
    Abstract: The present invention provides iRNA agents, e.g., double stranded iRNA agents, that target the transthyretin (TTR) gene and methods of using such iRNA agents for treating or preventing TTR-associated diseases.
    Type: Application
    Filed: January 26, 2022
    Publication date: January 26, 2023
    Inventors: Tracy Zimmermann, Amy Chan, Vasant R. Jadhav, Martin A. Maier, Kallanthottathil G. Rajeev
  • Publication number: 20230016929
    Abstract: One aspect of the present invention relates to a compound comprising an antisense strand which is complementary to a target gene; a sense strand which is complementary to said antisense strand; and one or more lipophilic monomers, containing one or more lipophilic moieties, conjugated to one or more positions on at least one strand, optionally via a linker or carrier. Another aspect of the invention relates to a method of gene silencing, comprising administering to a cell or a subject in need thereof a therapeutically effective amount of the lipophilic monomer-conjugated compound.
    Type: Application
    Filed: November 6, 2020
    Publication date: January 19, 2023
    Inventors: Jayaprakash K. NAIR, Martin A. MAIER, Juan C. SALINAS, Shigeo MATSUDA, Alexander V. KEL'IN, Scott P. LENTINI, Guo HE, Michelle H. JUNG, Justin M. PIERSON, Muthiah MANOHARAN, Dale C. GUENTHER, Ivan ZLATEV, Christopher S. THEILE, Vasant R. JADHAV, Stuart MILSTEIN, Maja JANAS, Dhrubajyoti DATTA
  • Patent number: 11529428
    Abstract: The present invention provides methods comprising the in vivo delivery of small nucleic acid molecules capable of mediating RNA interference and reducing the expression of myostatin, wherein the small nucleic acid molecules are introduced to a subject by systemic administration. Specifically, the invention relates to methods comprising the in vivo delivery of short interfering nucleic acid (siNA) molecules that target a myostatin gene expressed by a subject, wherein the siNA molecule is conjugated to a lipophilic moiety, such as cholesterol. The myostatin siNA conjugates that are delivered as per the methods disclosed are useful to modulate the in vivo expression of myostatin, increase muscle mass and/or enhance muscle performance. Use of the disclosed methods is further indicated for treating musculoskeletal diseases or disorders and/or diseases or disorders that result in conditions in which muscle is adversely affected.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: December 20, 2022
    Inventors: Marija Tadin-Strapps, Tayeba Khan, Walter Richard Strapps, Laura Sepp-Lorenzino, Vasant R. Jadhav, Duncan Brown
  • Patent number: 11530407
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of gene expression and/or activity, and/or modulate a gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against target gene expression.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: December 20, 2022
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Brian Allen Carr, Vasant R. Jadhav, Denise M. Kenski, David M. Tellers, Aarron T. Willingham
  • Patent number: 11504391
    Abstract: One aspect of the present invention relates to double-stranded RNA (dsRNA) agent capable of inhibiting the expression of a target gene. The antisense strand of the dsRNA molecule comprises at least one thermally destabilizing nucleotide occurring at a seed region; the dsRNA comprises at least four 2?-fluoro modifications, and the sense strand of the dsRNA molecule comprises ligand, wherein the ligand is an ASGPR ligand. Other aspects of the invention relates to pharmaceutical compositions comprising these dsRNA molecules suitable for therapeutic use, and methods of inhibiting the expression of a target gene by administering these dsRNA molecules, e.g., for the treatment of various disease conditions.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: November 22, 2022
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Mark K. Schlegel, Maja Janas, Vasant R. Jadhav, Donald Foster, Muthiah Manoharan, Kallanthottathil G. Rajeev, Muthusamy Jayaraman, Alexander V. Kel'in, Shigeo Matsuda, Klaus Charisse, Jayaprakash K. Nair, Martin A. Maier, Alfica Sehgal, Christopher Brown, Christopher Theile, Stuart Milstein
  • Patent number: 11492623
    Abstract: The present disclosure relates to double stranded RNA agents targeting the hepatitis B virus (HBV) genome, and methods of using such agents to inhibit expression of one or more HBV genes and methods of treating subjects having an HBV infection or HBV-associated disorder, e.g., chronic hepatitis B infection.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: November 8, 2022
    Assignee: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Vasant R. Jadhav, Martin A. Maier, Stuart Milstein, Mark K. Schlegel
  • Publication number: 20220333104
    Abstract: The present invention provides iRNA agents, e.g., double stranded iRNA agents, that target the transthyretin (TTR) gene and methods of using such iRNA agents for treating or preventing TTR-associated ocular diseases.
    Type: Application
    Filed: March 26, 2021
    Publication date: October 20, 2022
    Inventors: Jayaprakash K. Nair, Martin A. Maier, Vasant R. Jadhav, Mark Keating, Kevin Fitzgerald, Stuart Milstein, Kirk Brown, Muthiah Manoharan
  • Publication number: 20220290145
    Abstract: One aspect of the present invention relates to double-stranded RNA (dsRNA) agent capable of inhibiting the expression of a target gene. The antisense strand of the dsRNA molecule comprises at least one thermally destabilizing nucleotide occurring at a seed region; the dsRNA comprises at least four 2?-fluoro modifications, and the sense strand of the dsRNA molecule comprises ligand, wherein the ligand is an ASGPR ligand. Other aspects of the invention relate to pharmaceutical compositions comprising these dsRNA molecules suitable for therapeutic use, and methods of inhibiting the expression of a target gene by administering these dsRNA molecules, e.g., for the treatment of various disease conditions.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 15, 2022
    Applicant: ALNYLAM PHARMACEUTICALS, INC.
    Inventors: Shigeo MATSUDA, Mark K. SCHLEGEL, Maja JANAS, Vasant R. JADHAV, Martin MAIER, Klaus CHARISSE, Muthiah MANOHARAN, Kallathotathil G. RAJEEV, Jayaprakash K. NAIR
  • Patent number: 11286486
    Abstract: The present invention provides iRNA agents, e.g., double stranded iRNA agents, that target the transthyretin (TTR) gene and methods of using such iRNA agents for treating or preventing TTR-associated diseases.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: March 29, 2022
    Assignee: Alnylam Pharmaceuticals, Inc.
    Inventors: Tracy Zimmermann, Amy Chan, Vasant R. Jadhav, Martin A. Maier, Kallanthottathil G. Rajeev
  • Publication number: 20210332365
    Abstract: The present disclosure relates to double stranded RNA agents targeting the hepatitis B virus (HBV) genome, and methods of using such agents to inhibit expression of one or more HBV genes and methods of treating subjects having an HBV infection or HBV-associated disorder, e.g., chronic hepatitis B infection.
    Type: Application
    Filed: August 12, 2019
    Publication date: October 28, 2021
    Inventors: Vasant R. JADHAV, Martin A. MAIER, Stuart MILSTEIN, Mark K. SCHLEGEL
  • Publication number: 20210269796
    Abstract: The invention relates to RNAi agents, e.g., double stranded RNAi agents, targeting the Serpina1 gene, and methods of using such RNAi agents to inhibit expression of Serpina1 and methods of treating subjects having a Serpina1 associated disease, such as a liver disorder.
    Type: Application
    Filed: March 8, 2021
    Publication date: September 2, 2021
    Inventors: Mark K. Schlegel, Maja Janas, Vasant R. Jadhav, Donald Foster, Muthiah Manoharan, Kallanthottathil G. Rajeev, Alexander V. Kel'in, Klaus Charisse, Jayaprakash K. Nair, Martin A. Maier, Shigeo Matsuda, Muthusamy Jayaraman, Alfica Sehgal, Christopher Brown, Kevin Fitzgerald, Stuart Milstein