Patents by Inventor Vedapuram Achutharaman

Vedapuram Achutharaman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8497193
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: July 30, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Patent number: 8409353
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 2, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Publication number: 20120031332
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Application
    Filed: October 20, 2011
    Publication date: February 9, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Publication number: 20110250764
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Application
    Filed: June 21, 2011
    Publication date: October 13, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Patent number: 7972441
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Grant
    Filed: April 5, 2005
    Date of Patent: July 5, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Publication number: 20080090309
    Abstract: A method for rapid thermal annealing is disclosed. As the substrate is inserted into an annealing chamber, it begins to heat due to the heat radiating from chamber components that were heated when a previous substrate was annealed. Thus, the leading edge of the substrate may be at an elevated temperature while the trailing edge of the substrate may be at room temperature while the substrate is inserted causing a temperature gradient is present across the substrate. Once the substrate is completely inserted into the annealing chamber, the temperature gradient may still be present. By compensating for the temperature gradient across the substrate, the substrate may be annealed uniformly.
    Type: Application
    Filed: May 20, 2007
    Publication date: April 17, 2008
    Inventors: JOSEPH RANISH, Balasubramanian Ramachandran, Ravi Jallepally, Sundar Ramamurthy, Vedapuram Achutharaman, Brian Haas, Aaron Hunter, Wolfgang Aderhold
  • Patent number: 7241345
    Abstract: The cylinder includes a core and a coating covering most of the core. The core is made from a heat-resistant or insulating material. The core has inner and outer side walls and opposing first and second ends. The outer side wall is further away from a central longitudinal axis of the cylinder than the inner wall. The first end is configured to contact an edge ring that supports a semiconductor substrate. The coating is substantially opaque to infrared radiation, and covers all external surfaces of the core except for the first end. The core is preferably made from quartz or ceramics, while the coating is preferably made from a polysilicon.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: July 10, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Sundar Ramamurthy, Vedapuram Achutharaman, Ho T. Fang
  • Publication number: 20070026693
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Toir and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Application
    Filed: September 8, 2006
    Publication date: February 1, 2007
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yoshitaka YOKOTA, Sundar RAMAMURTHY, Vedapuram ACHUTHARAMAN, Cory CZARNIK, Mehran BEHDJAT, Christopher OLSEN
  • Publication number: 20060240680
    Abstract: A semiconductor wafer processing system including a factory interface operating at atmospheric pressure and mounting plural wafer cassettes and plural wafer processing chambers connected to the factory interface through respective slit valves. A robot in the factory interface can transfer wafers between the cassettes and the processing chambers. At least one of the processing chambers can operate at reduced pressure The processing chamber may be a rapid thermal processing chamber including an array of lamps irradiating a processing volume through a window. The lamphead is vacuum pumped to a pressure approximating that in the processing volume. A multi-step process may be performed with different pressures. The invention also includes a wafer access port of a thermal processing chamber which can flow an inert gas in outside of the slit valve to thereby form a gas curtain outside of the opened slit to prevent the out flow of toxic processing gases.
    Type: Application
    Filed: April 25, 2005
    Publication date: October 26, 2006
    Inventors: Yoshitaka Yokota, Kirk Moritz, Kai Ma, Wen Chang, Anastasios Parasiris, Rohit Sharma, Agus Tjandra, Vedapuram Achutharaman, Sundar Ramamurthy, Randhir Thakur
  • Publication number: 20060223315
    Abstract: A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O2, enter the chamber through another inlet. The chamber is maintained at a low pressure below 20 Torr and the substrate is advantageously maintained at a temperature less than 800° C. Alternatively, the oxidation may be performed in an LPCVD chamber including a pedestal heater and a showerhead gas injector in opposition to the pedestal.
    Type: Application
    Filed: April 5, 2005
    Publication date: October 5, 2006
    Inventors: Yoshitaka Yokota, Sundar Ramamurthy, Vedapuram Achutharaman, Cory Czarnik, Mehran Behdjat, Christopher Olsen
  • Publication number: 20040250772
    Abstract: The cylinder includes a core and a coating covering most of the core. The core is made from a heat-resistant or insulating material. The core has inner and outer side walls and opposing first and second ends. The outer side wall is further away from a central longitudinal axis of the cylinder than the inner wall. The first end is configured to contact an edge ring that supports a semiconductor substrate. The coating is substantially opaque to infrared radiation, and covers all external surfaces of the core except for the first end. The core is preferably made from quartz or ceramics, while the coating is preferably made from a polysilicon.
    Type: Application
    Filed: June 16, 2003
    Publication date: December 16, 2004
    Inventors: Sundar Ramamurthy, Vedapuram Achutharaman, Ho T. Fang