Patents by Inventor Veli-Matti Purola

Veli-Matti Purola has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7232935
    Abstract: The invention relates to a process for producing a hydrocarbon component of biological origin. The process comprises at least two steps, the first one of which is a HDO step and the second one is an isomerization step operated using the counter-current flow principle. A biological raw material containing fatty acids and/or fatty acid esters serves as the feed stock.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: June 19, 2007
    Assignee: Fortum OYJ
    Inventors: Juha Jakkula, Vesa Niemi, Jouko Nikkonen, Veli-Matti Purola, Jukka Myllyoja, Pekka Aalto, Juha Lehtonen, Ville Alopaeus
  • Publication number: 20070010682
    Abstract: The invention relates to a process for the manufacture of diesel range hydrocarbons wherein a feed is hydrotreated in a hydrotreating step and isomerised in an isomerisation step, and a feed comprising fresh feed containing more than 5 wt % of free fatty acids and at least one diluting agent is hydrotreated at a reaction temperature of 200-400° C., in a hydrotreating reactor in the presence of catalyst, and the ratio of the diluting agent/fresh feed is 5-30:1.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 11, 2007
    Applicant: Neste Oil Oyj
    Inventors: Jukka Myllyoja, Pekka Aalto, Pekka Savolainen, Veli-Matti Purola, Ville Alopaeus, Johan Gronqvist
  • Publication number: 20050228205
    Abstract: A method for dimerizing isobutene, wherein, in dimerizing conditions, the isobutene is brought into contact with a porous cation exchange resin comprising a styrene polymer, which is cross-linked with divinyl benzene, and any sulphonic acid groups adhering to the polymer. The harmful deactivation of this catalyst, which is caused by the accumulation of the oligomers and polymers of isobutene and other C4-olefins in the cation exchange resin catalyst, is essentially decreased by selecting the cation exchange resin from a group including cation exchange resins, the acid,capacity of which is 4.7 equivalents/kg at a minimum, and the portion of divinyl benzene units of which is 5% by weight at a minimum and smaller than 20% by weight.
    Type: Application
    Filed: October 29, 2004
    Publication date: October 13, 2005
    Applicant: FORTUM OYJ
    Inventors: Veli-Matti Purola, Sami Toppinen, Antti Pyhalahti, Marina Lindblad, Johan Gronqvist, Pirjo Siira
  • Publication number: 20050177014
    Abstract: The present invention relates to a process for the hydrogenation of olefins. The process comprises hydrogenation of a feed stock comprising more than 90 wt-% of olefins, carried out in a hydrogenation reactor comprising at least two reaction stages, wherein the feed stock is hydrogenated in the first reaction stage equipped with a cooling circuit and comprising a first and an optional second catalyst bed, and the effluent from the first reaction stage is hydrogenated in the final reaction stage comprising one or more catalyst beds and optionally equipped with a cooling circuit, the process is operated in trickling or pulse flow mode in a three phase reactor with a fixed catalyst bed and at least one catalyst of same or different type is used in each stage, the catalyst having different particle size and/or optionally different shape in at least two stages.
    Type: Application
    Filed: November 12, 2004
    Publication date: August 11, 2005
    Applicant: Fortum Oyj
    Inventors: Isto Eilos, Antti Pyhalahti, Matti Nurminen, Veli-Matti Purola
  • Patent number: 6897347
    Abstract: The invention relates to a method for dimerizing isobutene, wherein, in dimerizing conditions, the isobutene is brought into contact with a porous cation exchange resin comprising a styrene polymer, which is cross-linked with divinyl benzene, and any sulphonic acid groups adhering to the polymer. The harmful deactivation of this catalyst, which is caused by the accumulation of the oligomers and polymers of isobutene and other C4-olefins in the cation exchange resin catalyst, is essentially decreased by selecting the cation exchange resin from a group including cation exchange resins, the acid capacity of which is 4.7 equivalents/kg at a minimum, and the portion of divinyl benzene units of which is 5% by weight at a minimum and smaller than 20% by weight.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: May 24, 2005
    Assignee: Fortum Oyj
    Inventors: Veli-Matti Purola, Sami Toppinen, Antti Pyhälahti, Marina Lindblad, Johan Grönqvist, Pirjo Siira
  • Publication number: 20040230085
    Abstract: The invention relates to a process for producing a hydrocarbon component of biological origin. The process comprises at least two steps, the first one of which is a HDO step and the second one is an isomerization step operated using the counter-current flow principle. A biological raw material containing fatty acids and/or fatty acid esters serves as the feed stock.
    Type: Application
    Filed: September 5, 2003
    Publication date: November 18, 2004
    Inventors: Juha Jakkula, Vesa Niemi, Jouko Nikkonen, Veli-Matti Purola, Jukka Myllyoja, Pekka Aalto, Juha Lehtonen, Ville Alopaeus
  • Publication number: 20030088134
    Abstract: The invention relates to a method for dimerizing isobutene, wherein, in dimerizing conditions, the isobutene is brought into contact with a porous cation exchange resin comprising a styrene polymer, which is cross-linked with divinyl benzene, and any sulphonic acid groups adhering to the polymer. The harmful deactivation of this catalyst, which is caused by the accumulation of the oligomers and polymers of isobutene and other C4-olefins in the cation exchange resin catalyst, is essentially decreased by selecting the cation exchange resin from a group including cation exchange resins, the acid capacity of which is 4.7 equivalents/kg at a minimum, and the portion of divinyl benzene units of which is 5% by weight at a minimum and smaller than 20% by weight.
    Type: Application
    Filed: April 30, 2002
    Publication date: May 8, 2003
    Inventors: Veli-Matti Purola, Sami Toppinen, Antti Pyhalahti, Marina Lindblad, Johan Gronqvist, Pirjo Siira