Patents by Inventor Venigalla B. RAO

Venigalla B. RAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230355738
    Abstract: A bacteriophage T4-based, multivalent/multicomponent, needle and adjuvant-free, mucosal vaccine by engineering spike trimers on capsid exterior and nucleocapsid protein in the interior is disclosed herein. Intranasal administration of this T4-COVID vaccine induces higher virus neutralization antibody titers against multiple variants, balanced Th1/Th2 antibody and cytokine responses, stronger CD4+ and CD8+ T cell immunity, and higher secretory IgA titers in sera and bronchoalveolar lavage with no effect on the gut microbiota, compared to vaccination of mice intramuscularly. The vaccine is stable at ambient temperature, induce apparent sterilizing immunity, and provide complete protection against original SARS-CoV-2 strain and its Delta variant with minimal lung histopathology. This mucosal vaccine is an excellent candidate for boosting immunity of immunized and/or as a second-generation vaccine for the unimmunized population.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 9, 2023
    Inventors: Venigalla B. RAO, Jingen ZHU
  • Publication number: 20230026666
    Abstract: Described is an engineered viral particle programmed with T cell targeting specificity. The viral particles comprise: at least one viral vector, such as bacteriophage T4; and at least one CD4-binding protein displayed on the surface of the viral vector. Also described is a method of reactivate latent HIV-1 and cure patient with HIV-1 infection, using such an engineered viral particle.
    Type: Application
    Filed: May 4, 2022
    Publication date: January 26, 2023
    Inventors: Venigalla B. RAO, Himanshu BATRA
  • Patent number: 11401530
    Abstract: Described is an “artificial virus” (AV) programmed with biomolecules that can enter human cells and carry out precise human genome modification. The AVs comprise: at least one viral vector, such as bacteriophage T4; at least one therapeutic molecule, such as DNA, RNA, protein and their complex; and a lipid coating. Also described is a method of human genome modification, using such an AV, and a method of program such an AV.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: August 2, 2022
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Jingen Zhu
  • Publication number: 20220184205
    Abstract: The present disclosure relates to a system for and a method of incorporating SARS-CoV-2 genes and proteins into T4 phages. The present disclosure also relates to vaccine against SARS-CoV-2 containing recombinant T4 phages created using the method provided in the present disclosure.
    Type: Application
    Filed: December 13, 2021
    Publication date: June 16, 2022
    Inventors: Venigalla B. RAO, Jingen ZHU
  • Publication number: 20220090139
    Abstract: Described is an “artificial virus” (AV) programmed with biomolecules that can enter human cells and carry out precise human genome modification. The AVs comprise: at least one viral vector, such as bacteriophage T4; at least one therapeutic molecule, such as DNA, RNA, protein and their complex; and a lipid coating. Also described is a method of human genome modification, using such an AV, and a method of program such an AV.
    Type: Application
    Filed: December 9, 2021
    Publication date: March 24, 2022
    Inventors: Venigalla B. RAO, Jingen ZHU
  • Publication number: 20220033850
    Abstract: Described is an “artificial virus” (AV) programmed with biomolecules that can enter human cells and carry out precise human genome modification. The AVs comprise: at least one viral vector, such as bacteriophage T4; at least one therapeutic molecule, such as DNA, RNA, protein and their complex; and a lipid coating. Also described is a method of human genome modification, using such an AV, and a method of program such an AV.
    Type: Application
    Filed: June 28, 2021
    Publication date: February 3, 2022
    Inventors: Venigalla B. RAO, Jingen ZHU
  • Publication number: 20220010335
    Abstract: Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 13, 2022
    Inventors: Venigalla B. RAO, Jingen ZHU
  • Patent number: 11219686
    Abstract: Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracis fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: January 11, 2022
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Patent number: 11155835
    Abstract: Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: October 26, 2021
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Jingen Zhu
  • Publication number: 20210054410
    Abstract: Described is hybrid viral vector comprising: a first virus such as bacteriophage T4; one or more second virus such as adeno-associated virus (AAV) attached to the first virus through cross-bridges, such as avidin-biotin cross-bridges; one or more DNA molecules packaged in the first virus; one or more nucleic acid molecules packaged in the second virus; and one or more proteins displayed on the surface of the first virus. Also described are methods of making and using such a hybrid viral vector.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 25, 2021
    Inventors: Venigalla B. RAO, Jingen ZHU
  • Publication number: 20200147207
    Abstract: Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracis fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 14, 2020
    Inventor: Venigalla B. RAO
  • Patent number: 10556002
    Abstract: Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracia fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: February 11, 2020
    Assignee: The Catholic University of America
    Inventor: Venigalla B. Rao
  • Publication number: 20190330643
    Abstract: Embodiments of the invention provide systems, methods, and kits for CRISPR-based editing of DNA targets by a CRISPR-associated (Cas) enzyme. The systems include a bacterial host cell adapted to produce an engineered bacteriophage comprising a Cas protein and guide RNA that do not naturally occur together, i.e. they are engineered to occur together, as well as a DNA repair template comprising a donor DNA having a desired mutation. The guide RNA comprises a trans-activating crRNA and a guide sequence complementary to a target protospacer in a bacteriophage genome. A wild-type bacteriophage or a glucosylhydroxymethyl cytosine (ghmC)-unmodified mutant bacteriophage may be delivered into a disclosed bacterial host cell to create recombinants of bacteriophage having the desired mutation provided by the donor DNA.
    Type: Application
    Filed: March 18, 2019
    Publication date: October 31, 2019
    Inventors: Venigalla B. Rao, Pan Tao
  • Patent number: 10407470
    Abstract: Provided herein are HIV vaccines that encompasses recombinant trimers that mimic native HIV-1 envelope trimers. Also provided are methods of administering to a subject in need thereof an HIV vaccine provided herein to elicit antibodies against a recombinant trimer in the subject. A recombinant trimer is formed by a recombinant protein comprising a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140, wherein the linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix during purification of the recombinant trimer.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: September 10, 2019
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Wadad Alsalmi
  • Publication number: 20180264102
    Abstract: Bivalent immunogenic compositions against anthrax and plague are disclosed herein. One bivalent immunogenic composition comprises a triple fusion protein containing three antigens, F1 and V from Yersinia pestis and PA antigen from Bacillus anthracia fused in-frame and retaining structural and functional integrity of all three antigens. Another bivalent immunogenic composition comprises bacteriophage nanoparticles arrayed with these three antigens on the capsid surface of the bacteriophage nanoparticles. These bivalent immunogenic compositions are able to elicit robust immune response in a subject administered said the bivalent immunogenic compositions and provide protection to the subject against sequential or simultaneous challenge with both anthrax and plague pathogens.
    Type: Application
    Filed: February 9, 2018
    Publication date: September 20, 2018
    Inventor: Venigalla B. RAO
  • Publication number: 20180194811
    Abstract: Provided herein are HIV vaccines that encompasses recombinant trimers that mimic native HIV-1 envelope trimers. Also provided are methods of administering to a subject in need thereof an HIV vaccine provided herein to elicit antibodies against a recombinant trimer in the subject. A recombinant trimer is formed by a recombinant protein comprising a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140, wherein the linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix during purification of the recombinant trimer.
    Type: Application
    Filed: February 28, 2018
    Publication date: July 12, 2018
    Inventors: Venigalla B. RAO, Wadad ALSALMI
  • Patent number: 10005819
    Abstract: An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: June 26, 2018
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Wadad Alsalmi
  • Patent number: 9975924
    Abstract: An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: May 22, 2018
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Wadad Alsalmi
  • Patent number: 9944679
    Abstract: Provided herein are HIV vaccines that encompasses recombinant trimers that mimic native HIV-1 envelope trimers. Also provided are methods of administering to a subject in need thereof an HIV vaccine provided herein to elicit antibodies against a recombinant trimer in the subject. A recombinant trimer is formed by a recombinant protein comprising a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140, wherein the linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix during purification of the recombinant trimer.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 17, 2018
    Assignee: The Catholic University of America
    Inventors: Venigalla B. Rao, Wadad Alsalmi
  • Publication number: 20180066023
    Abstract: An approach of producing recombinant trimers that mimic native HIV-1 envelope trimers is developed. A recombinant protein forming the recombinant trimers encompasses a recombinant HIV-1 gp140 fused to a tag through a linker at C-terminus of the recombinant HIV-1 gp140. The linker is sufficiently long so that the tag is accessible for binding by a binding molecule bound on a solid matrix. After expressed in a cell, the recombinant protein is secreted into the culture medium and assembles into recombinant trimers therein. The recombinant trimers may be directly purified from the culture medium. Cleaved and uncleaved trimers from different clade viruses are produced.
    Type: Application
    Filed: November 20, 2017
    Publication date: March 8, 2018
    Inventors: Venigalla B. RAO, Wadad ALSALMI