Patents by Inventor Venkat Hariharan

Venkat Hariharan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230294239
    Abstract: Methods and formulations for manufacturing polishing articles used in polishing processes are provided. In one implementation, a UV curable resin precursor composition is provided. The UV curable resin precursor comprises a precursor formulation. The precursor formulation comprises a first resin precursor component that comprises a semi-crystalline radiation curable oligomeric material, wherein the semi-crystalline radiation curable oligomeric material is selected from a semi-crystalline aliphatic polyester urethane acrylate, a semi-crystalline aliphatic polycarbonate urethane acrylate, a semi-crystalline aliphatic polyether urethane acrylate, or combinations thereof. The precursor formulation further comprises a second resin precursor component that comprises a monofunctional or multifunctional acrylate monomer.
    Type: Application
    Filed: May 25, 2023
    Publication date: September 21, 2023
    Inventors: Sivapackia GANAPATHIAPPAN, Ankit VORA, Boyi FU, Venkat HARIHARAN, Mayu YAMAMURA, Mario CORNEJO, Igor ABRAMSON, Mo YANG, Daniel REDFIELD, Rajeev BAJAJ, Nag B. PATIBANDLA
  • Patent number: 11685014
    Abstract: Methods and formulations for manufacturing polishing articles used in polishing processes are provided. In one implementation, a UV curable resin precursor composition is provided. The UV curable resin precursor comprises a precursor formulation. The precursor formulation comprises a first resin precursor component that comprises a semi-crystalline radiation curable oligomeric material, wherein the semi-crystalline radiation curable oligomeric material is selected from a semi-crystalline aliphatic polyester urethane acrylate, a semi-crystalline aliphatic polycarbonate urethane acrylate, a semi-crystalline aliphatic polyether urethane acrylate, or combinations thereof. The precursor formulation further comprises a second resin precursor component that comprises a monofunctional or multifunctional acrylate monomer.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: June 27, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sivapackia Ganapathiappan, Ankit Vora, Boyi Fu, Venkat Hariharan, Mayu Yamamura, Mario Cornejo, Igor Abramson, Mo Yang, Daniel Redfield, Rajeev Bajaj, Nag B. Patibandla
  • Patent number: 10919123
    Abstract: Embodiments described herein relate to methods of detecting a polishing endpoint using one or more sensors embedded in the polishing material of a polishing pad, the polishing pads, and methods of forming the polishing pads. In one embodiment, a method of polishing a substrate includes urging a to be polished surface of a substrate against a polishing surface of a polishing pad, the polishing pad having one or more sensors embedded in the polishing pad material thereof, wherein the polishing pad is mounted on a polishing platen of a polishing system, detecting a force exerted against a polishing surface of the polishing pad using the one or more sensors, converting the detected force into signal information, wirelessly communicating the signal information received from the one or more sensors to one or more interrogators disposed in the polishing platen, and changing one or more polishing conditions based on the signal information.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Venkat Hariharan, Rajeev Bajaj, Daniel Redfield
  • Patent number: 10875145
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: December 29, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Patent number: 10821573
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 3, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Publication number: 20200070302
    Abstract: Methods and formulations for manufacturing polishing articles used in polishing processes are provided. In one implementation, a UV curable resin precursor composition is provided. The UV curable resin precursor comprises a precursor formulation. The precursor formulation comprises a first resin precursor component that comprises a semi-crystalline radiation curable oligomeric material, wherein the semi-crystalline radiation curable oligomeric material is selected from a semi-crystalline aliphatic polyester urethane acrylate, a semi-crystalline aliphatic polycarbonate urethane acrylate, a semi-crystalline aliphatic polyether urethane acrylate, or combinations thereof. The precursor formulation further comprises a second resin precursor component that comprises a monofunctional or multifunctional acrylate monomer.
    Type: Application
    Filed: August 2, 2019
    Publication date: March 5, 2020
    Inventors: Sivapackia GANAPATHIAPPAN, Ankit VORA, Boyi FU, Venkat HARIHARAN, Mayu YAMAMURA, Mario CORNEJO, Igor ABRAMSON, Mo YANG, Daniel REDFIELD, Rajeev BAJAJ, Nag B. PATIBANDLA
  • Patent number: 10384330
    Abstract: Embodiments of the present disclosure relate to advanced polishing pads with tunable chemical, material and structural properties, and new methods of manufacturing the same. According to one or more embodiments of the disclosure, it has been discovered that a polishing pad with improved properties may be produced by an additive manufacturing process, such as a three-dimensional (3D) printing process. Embodiments of the present disclosure thus may provide an advanced polishing pad that has discrete features and geometries, formed from at least two different materials that include functional polymers, functional oligomers, reactive diluents, and curing agents. For example, the advanced polishing pad may be formed from a plurality of polymeric layers, by the automated sequential deposition of at least one resin precursor composition followed by at least one curing step, wherein each layer may represent at least one polymer composition, and/or regions of different compositions.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 20, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rajeev Bajaj, Daniel Redfield, Mahendra C. Orilall, Boyi Fu, Aniruddh Khanna, Jason G. Fung, Mario Cornejo, Ashwin Chockalingam, Mayu Yamamura, Veera Raghava Reddy Kakireddy, Ashavani Kumar, Venkat Hariharan, Gregory E. Menk, Fred C. Redeker, Nag B. Patibandla, Hou T. Ng, Robert E. Davenport, Amritanshu Sinha
  • Publication number: 20190240802
    Abstract: Embodiments described herein relate to methods of detecting a polishing endpoint using one or more sensors embedded in the polishing material of a polishing pad, the polishing pads, and methods of forming the polishing pads. In one embodiment, a method of polishing a substrate includes urging a to be polished surface of a substrate against a polishing surface of a polishing pad, the polishing pad having one or more sensors embedded in the polishing pad material thereof, wherein the polishing pad is mounted on a polishing platen of a polishing system, detecting a force exerted against a polishing surface of the polishing pad using the one or more sensors, converting the detected force into signal information, wirelessly communicating the signal information received from the one or more sensors to one or more interrogators disposed in the polishing platen, and changing one or more polishing conditions based on the signal information.
    Type: Application
    Filed: January 28, 2019
    Publication date: August 8, 2019
    Inventors: Venkat HARIHARAN, Rajeev BAJAJ, Daniel REDFIELD