Patents by Inventor Venkata Kishore Mogatadakala

Venkata Kishore Mogatadakala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10720236
    Abstract: The present disclosure provides components, systems, and methods for predictive maintenance of medical diagnostic machine components.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: July 21, 2020
    Assignee: DI Insights, LLC
    Inventor: Venkata Kishore Mogatadakala
  • Publication number: 20190304600
    Abstract: The present disclosure provides components, systems, and methods for predictive maintenance of medical diagnostic machine components.
    Type: Application
    Filed: March 30, 2018
    Publication date: October 3, 2019
    Inventor: Venkata Kishore Mogatadakala
  • Patent number: 10185019
    Abstract: A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: January 22, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Weijun Shen, Timothy John Havens, Longzhi Jiang, Saikat Saha, Benjamin Jacob Gronemeyer, Venkata Kishore Mogatadakala
  • Patent number: 9810755
    Abstract: A system for energizing a main coil of superconducting magnet in a magnetic resonance imaging (MRI) system includes a cryostat comprising a housing. A first coil is positioned within the housing of the cryostat. Alternatively, the first coil may be positioned external to the housing of the cryostat. A second coil is coupled to the first coil and positioned external to the housing of the cryostat. The second coil is configured to inductively couple to the main coil. A controller is coupled to the first coil and the second coil and is configured to control the first coil and the second coil to induce current in the main coil.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 7, 2017
    Assignee: General Electric Company
    Inventors: Weijun Shen, Timothy John Havens, Longzhi Jiang, Zhenyu Zhang, Venkata Kishore Mogatadakala
  • Publication number: 20160252598
    Abstract: A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
    Type: Application
    Filed: December 8, 2015
    Publication date: September 1, 2016
    Inventors: Weijun Shen, Timothy John Havens, Longzhi Jiang, Saikat Saha, Benjamin Jacob Gronemeyer, Venkata Kishore Mogatadakala
  • Patent number: 9322892
    Abstract: A system and method for magnetic field distortion compensation includes a cryostat for a magnetic resonance imaging (MRI) system. The cryostat includes a vacuum casing having a vacuum therein. A cryogen vessel is disposed within the casing, the vessel having a coolant therein. A thermal shield is disposed between the vacuum casing and the cryogen vessel. An eddy current compensation assembly is disposed within the casing. The eddy current compensation assembly includes a plurality of electrically conductive loops formed on one of the vacuum casing, the cryogen vessel, and the thermal shield and constructed to mitigate vibration-induced eddy currents in the MRI system.
    Type: Grant
    Filed: December 24, 2012
    Date of Patent: April 26, 2016
    Assignee: General Electric Company
    Inventors: Weijun Shen, Timothy John Havens, Longzhi Jiang, Saikat Saha, Benjamin Jacob Gronemeyer, Venkata Kishore Mogatadakala
  • Publication number: 20150168517
    Abstract: A system for energizing a main coil of superconducting magnet in a magnetic resonance imaging (MRI) system includes a cryostat comprising a housing. A first coil is positioned within the housing of the cryostat. Alternatively, the first coil may be positioned external to the housing of the cryostat. A second coil is coupled to the first coil and positioned external to the housing of the cryostat. The second coil is configured to inductively couple to the main coil. A controller is coupled to the first coil and the second coil and is configured to control the first coil and the second coil to induce current in the main coil.
    Type: Application
    Filed: December 16, 2013
    Publication date: June 18, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Weijun Shen, Timothy John Havens, Longzhi Jiang, Zhenyu Zhang, Venkata Kishore Mogatadakala