Patents by Inventor Vernon Seguin

Vernon Seguin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080205475
    Abstract: Through the use of a relatively inexpensive third mirror on a novel folded hybrid unstable resonator configuration, the optimum output coupling for a given laser design can be explored quickly and easily with a minimum of intracavity mirror alignment. No changes in either the radii of curvature of the three cavity optics or their spacing are required for this exploration. In addition to providing techniques for purposefully and systematically introducing mirror edge effects or avoiding edges effects altogether, the invention provides that output beams of different width can be advantageously explored in a relatively simple and straightforward manner. The invention provides that higher geometric magnification cavity designs may be made compatible with low diffraction output coupling in a configuration that uses only three totally reflecting optics.
    Type: Application
    Filed: February 19, 2008
    Publication date: August 28, 2008
    Inventors: Peter P. Chenausky, Lanny Laughman, Eric R. Mueller, Leon A. Newman, Vernon A. Seguin, Christian J. Shackleton
  • Publication number: 20080205473
    Abstract: A low inductance, hermetically sealed, RF shielded feed-through is provided for exciting low impedance discharges associated with high power CO2 slab lasers. The feed-through mechanically obtains RF contact, preferably, at the center of the length of the electrodes that are inserted within the long laser housing, thereby making it easier to obtain a uniform electric field distribution along the length of the electrodes.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 28, 2008
    Inventors: Christian J. Shackleton, Thomas V. Hennessey, Vernon Seguin, Frederick W. Hauer
  • Patent number: 7411989
    Abstract: A CO2 laser has a resonator mirror that oscillates about an axis perpendicular to the resonator axis through an angular range of oscillation sufficient that the resonator is only able to deliver radiation for a fraction of an oscillation period of the mirror. In one example of the laser, the oscillating mirror is an end-mirror of the resonator. In another example, the oscillating mirror is a fold mirror of the resonator.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: August 12, 2008
    Assignee: Coherent, Inc.
    Inventors: Luis A. Spinelli, Anthony J. DeMaria, Vernon Seguin
  • Publication number: 20080144675
    Abstract: A CO2 laser has a resonator mirror that oscillates about an axis perpendicular to the resonator axis through an angular range of oscillation sufficient that the resonator is only able to deliver radiation for a fraction of an oscillation period of the mirror. In one example of the laser, the oscillating mirror is an end-mirror of the resonator. In another example, the oscillating mirror is a fold mirror of the resonator.
    Type: Application
    Filed: December 13, 2006
    Publication date: June 19, 2008
    Inventors: Luis A. Spinelli, Anthony J. DeMaria, Vernon Seguin
  • Publication number: 20080002751
    Abstract: A thin film polarizer (TFP) and a half-wave CdTe electro-optical crystal are utilized to achieve a higher damage threshold in Q-switching CO2 lasers for material processing applications. Half-wave CdTe electro-optical modulators can be used without the arcing and corona problems typically associated with the higher drive voltage by placing low dielectric constant insulators (such as BeO) around the CdTe crystal. Doubling the voltage placed across a CdTe crystal enables the crystal to function as a half-wave phase retarder EO switch with the same dimensions as a crystal functioning as a quarter-wave EO modulator. These half-wave EO switches can be used with TFPs to shape the output pulses, as well as to direct alternate pulses of repetitively pulsed super pulsed slab lasers to alternate scanners, thereby doubling the output of laser hole drilling systems.
    Type: Application
    Filed: July 6, 2006
    Publication date: January 3, 2008
    Inventors: Gongxue Hua, Vernon Seguin, Leon A. Newman, Eric R. Mueller
  • Patent number: 7280569
    Abstract: Various electro-optical modulator module designs are presented, which can provide for uniform, symmetric, and efficient heat removal for mode-locking, Q-switching, and/or cavity dumping operations. Heat can be uniformly extracted from an EO crystal without imposing undue stress, thereby preventing birefringence and laser beam degradation. A liquid-cooling approach can be used for high-duty operations, such as mode-locking operations. Efficient heat removal can prevent thermal run-away from electrical heating of the crystal due to the large drop in the electrical resistance of CdTe with increasing temperature when operated above 50° C. RF or video arcing and subsequent damage to the EO crystal can be prevented by surrounding the crystal with a low dielectric constant material that lowers the capacitance coupling to ground, while still maintaining good thermal cooling.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 9, 2007
    Assignee: Coherent, Inc.
    Inventors: Lanny Laughman, Thomas V. Hennessey, Jr., Joseph S. Smucz, Vernon A. Seguin, Raymond Michaud
  • Patent number: 7263116
    Abstract: A slab laser includes two elongated electrodes arranged spaced apart and face-to-face. Either one or two slabs of a solid dielectric material extend along the length of the electrodes between the electrodes. A discharge gap is formed either between one of the electrodes and one dielectric slab, or between two dielectric slabs. The discharge gap is filled with lasing gas. A pair of mirrors is configured and arranged to define a laser resonator extending through the gap. An RF potential is applied across the electrodes creating a gas discharge in the gap, and causing laser radiation to circulate in the resonator. Inserting dielectric material between the electrodes increases the resistance-capacitance (RC) time constant of the discharge structure compared with the RC time constant in the absence of dielectric material.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: August 28, 2007
    Assignee: Coherent, Inc.
    Inventors: Christian J. Shackleton, Phillip J. Gardner, Anthony J. DeMaria, Vernon Seguin, John T. Kennedy
  • Patent number: 7260134
    Abstract: An slab CO2 laser includes spaced-apart elongated slab electrodes. A lasing gas fills a discharge gap between the electrodes. An RF power supply is connected across the electrodes and sustains an electrical discharge in the lasing gas in the discharge gap. Either one or two ceramic inserts occupy a portion of width of the electrodes and in contact with the electrodes. A discharge gap is formed between the portions of the width of the electrodes not occupied by the insert or inserts. Provision of the ceramic insert or inserts increases the resistance-capacitance (RC) time constant of the electrode impedance by increasing the capacitive component of the time constant. This hinders the formation of arcs in the discharge, which, in turn enables the inventive laser to operate with higher excitation power or higher lasing-gas pressure than would be possible without the dielectric insert. The ceramic insert also decreases the difference in impedance of the electrodes with and without a discharge.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: August 21, 2007
    Assignee: Coherent, Inc.
    Inventors: Christian J. Shackleton, Phillip J. Gardner, Anthony J. DeMaria, Vernon Seguin, John T. Kennedy
  • Publication number: 20070041418
    Abstract: An improved laser system includes a sealed-off, RF excited, diffusion cooled, high pressure, short pulsed, high peak power waveguide and slab CO2 laser that avoids problems typically associated with obtaining a diffused discharge at high gas pressures, without arcing and without corona, while maintaining the unsaturated gain and gas temperature experienced at low pressures and scaling to higher pressures. Such a system has a long operating life-time, and is capable of operation at high gas pressures to obtain relative fast rise and fall time pulses. The system emits relatively short pulse widths, with pulse energies up to and exceeding 30 mJ, with reasonably high pulse repetition rates. The system also has a low pulsed RF power duty cycle, thereby enabling the generation of high peak power pulses, as well as reasonable average power and reasonably high peak powers.
    Type: Application
    Filed: July 12, 2006
    Publication date: February 22, 2007
    Inventors: Lanny Laughman, Vernon Seguin, Peter Chenausky, Robert Henschke, Eric Mueller
  • Patent number: 7113529
    Abstract: An electro-optical switch includes an optical assembly arranged to transmit laser-radiation. The optical assembly comprises an active optical crystal. On one of two opposite surfaces of the crystal is an optical window formed from a material having a refractive index lower than the material of the crystal. Heat deposited, as a result of transmission of the laser-radiation, at the surface of the crystal in contact with the widow is transferred to the window, thereby reducing the potential for optical damage to the crystal surface. The window is sufficiently thick that it has an odd integer multiple of quarter-wavelengths optical thickness at a wavelength about equal to a wavelength of the laser-radiation, thereby behaving as an antireflection device for the crystal at that wavelength. In one embodiment of the optical assembly, the active optical crystal is a cadmium telluride crystal and the window is formed from cesium bromide.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: September 26, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, R. Russel Austin, Anthony DeMaria
  • Patent number: 7046709
    Abstract: A pulsed, Q-switched, waveguide CO2 laser includes a plurality of waveguide channels formed in a block of a beryllium oxide ceramic material and is operated at a wavelength between about 9.2 and 9.7 micrometers. The laser has an output power up to 55% greater than that of a similarly configured laser, operated at the same wavelength and pulse conditions, but wherein the waveguide channels are formed in a block of an alumina ceramic material.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: May 16, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, John Kennedy
  • Patent number: 7039079
    Abstract: A laser includes a gain medium located in a laser resonator. The gain medium generates plane polarized radiation plane polarized in a first polarization orientation. An electro-optical switch is located in the resonator. When the switch is activated the polarization plane of the laser radiation is rotated to a second orientation after making a forward and a reverse pass through the optical switch. When the switch is deactivated, the polarization orientation of the forward and reverse transmitted laser radiation remains about the same. A polarization selective device is located in the resonator between the electro-optical switch and the gain medium. The polarization selective device is arranged to permit circulation in the resonator of laser radiation in the first polarization orientation, and to restrict circulation of laser radiation in the second polarization orientation. The Gain medium is energized and the switch activated to allow energy to build in the gain medium.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: May 2, 2006
    Assignee: Coherent, Inc.
    Inventors: Vernon Seguin, Leon Newman, John Kennedy, Joel Fontanella, Anthony DeMaria
  • Publication number: 20060029116
    Abstract: A slab laser includes two elongated electrodes arranged spaced apart and face-to-face. Either one or two slabs of a solid dielectric material extend along the length of the electrodes between the electrodes. A discharge gap is formed either between one of the electrodes and one dielectric slab, or between two dielectric slabs. The discharge gap is filled with lasing gas. A pair of mirrors is configured and arranged to define a laser resonator extending through the gap. An RF potential is applied across the electrodes creating a gas discharge in the gap, and causing laser radiation to circulate in the resonator. Inserting dielectric material between the electrodes increases the resistance-capacitance (RC) time constant of the discharge structure compared with the RC time constant in the absence of dielectric material.
    Type: Application
    Filed: August 5, 2004
    Publication date: February 9, 2006
    Inventors: Christian Shackleton, Phillip Gardner, Anthony DeMaria, Vernon Seguin, John Kennedy
  • Publication number: 20060007966
    Abstract: Various electro-optical modulator module designs are presented, which can provide for uniform, symmetric, and efficient heat removal for mode-locking, Q-switching, and/or cavity dumping operations. Heat can be uniformly extracted from an EO crystal without imposing undue stress, thereby preventing birefringence and laser beam degradation. A liquid-cooling approach can be used for high-duty operations, such as mode-locking operations. Efficient heat removal can prevent thermal run-away from electrical heating of the crystal due to the large drop in the electrical resistance of CdTe with increasing temperature when operated above 50° C. RF or video arcing and subsequent damage to the EO crystal can be prevented by surrounding the crystal with a low dielectric constant material that lowers the capacitance coupling to ground, while still maintaining good thermal cooling.
    Type: Application
    Filed: July 8, 2004
    Publication date: January 12, 2006
    Inventors: Lanny Laughman, Thomas Hennessey, Joseph Smucz, Vernon Seguin, Raymond Michaud
  • Publication number: 20050175054
    Abstract: An slab CO2 laser includes spaced-apart elongated slab electrodes. A lasing gas fills a discharge gap between the electrodes. An RF power supply is connected across the electrodes and sustains an electrical discharge in the lasing gas in the discharge gap. Either one or two ceramic inserts occupy a portion of width of the electrodes and in contact with the electrodes. A discharge gap is formed between the portions of the width of the electrodes not occupied by the insert or inserts. Provision of the ceramic insert or inserts increases the resistance-capacitance (RC) time constant of the electrode impedance by increasing the capacitive component of the time constant. This hinders the formation of arcs in the discharge, which, in turn enables the inventive laser to operate with higher excitation power or higher lasing-gas pressure than would be possible without the dielectric insert. The ceramic insert also decreases the difference in impedance of the electrodes with and without a discharge.
    Type: Application
    Filed: June 17, 2004
    Publication date: August 11, 2005
    Inventors: Christian Shackleton, Phillip Gardner, Anthony DeMaria, Vernon Seguin, John Kennedy
  • Publication number: 20050157762
    Abstract: Multiple laser beams, each having a shape such as a Gaussian profile, can be incoherently combined to obtain a shaped, flat top laser beam. The combined laser beams can provide power levels necessary for material processing applications such as annealing, drilling, and cutting, while minimizing the amount of unused power. The lasers can be positioned in an array in order to shape the flat top beam, and can be staggered in position where necessary to give each output beam an equal beam path length. The relative frequencies and/or powers of the lasers can be adjusted to control the flatness and stability of the incoherently combined beam.
    Type: Application
    Filed: January 20, 2004
    Publication date: July 21, 2005
    Inventors: Anthony DeMaria, Leon Newman, Vernon Seguin
  • Publication number: 20050105581
    Abstract: A pulsed, Q-switched, waveguide CO2 laser includes a plurality of waveguide channels formed in a block of a beryllium oxide ceramic material and is operated at a wavelength between about 9.2 and 9.7 micrometers. The laser has an output power up to 55% greater than that of a similarly configured laser, operated at the same wavelength and pulse conditions, but wherein the waveguide channels are formed in a block of an alumina ceramic material.
    Type: Application
    Filed: November 18, 2003
    Publication date: May 19, 2005
    Inventors: Vernon Seguin, Leon Newman, John Kennedy
  • Patent number: 6798816
    Abstract: A folded waveguide CO2 laser includes a plurality of waveguides arranged in a zigzag pattern with ends thereof overlapping. The laser includes a resonator having an axis extending through the plurality of waveguides. At least a portion of at least one of the waveguides has a uniform minimum width selected cooperative with the height of the waveguide and the laser wavelength such that the resonator can oscillate in only a single mode. At least a portion of one of the waveguides is tapered such that its width increases in one direction along the resonator axis. Tapering one or more of the waveguides provides that the total waveguide area and potential power output of the laser is greater than that of a zigzag arrangement of waveguides having the same total length waveguides each having a uniform width equal to the minimum width of the waveguide in the tapered waveguide arrangement.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Coherent, Inc.
    Inventors: Anthony J. DeMaria, Vernon A. Seguin, Lanny Laughman
  • Publication number: 20040179558
    Abstract: A laser includes a gain medium located in a laser resonator. The gain medium generates plane polarized radiation plane polarized in a first polarization orientation. An electro-optical switch is located in the resonator. When the switch is activated the polarization plane of the laser radiation is rotated to a second orientation after making a forward and a reverse pass through the optical switch. When the switch is deactivated, the polarization orientation of the forward and reverse transmitted laser radiation remains about the same. A polarization selective device is located in the resonator between the electro-optical switch and the gain medium. The polarization selective device is arranged to permit circulation in the resonator of laser radiation in the first polarization orientation, and to restrict circulation of laser radiation in the second polarization orientation. The Gain medium is energized and the switch activated to allow energy to build in the gain medium.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 16, 2004
    Inventors: Vernon Seguin, Leon Newman, John Kennedy, Joel Fontanella, Anthony DeMaria
  • Publication number: 20040179775
    Abstract: An electro-optical switch includes an optical assembly arranged to transmit laser-radiation. The optical assembly comprises an active optical crystal. On one of two opposite surfaces of the crystal is an optical window formed from a material having a refractive index lower than the material of the crystal. Heat deposited, as a result of transmission of the laser-radiation, at the surface of the crystal in contact with the widow is transferred to the window, thereby reducing the potential for optical damage to the crystal surface. The window is sufficiently thick that it has an odd integer multiple of quarter-wavelengths optical thickness at a wavelength about equal to a wavelength of the laser-radiation, thereby behaving as an antireflection device for the crystal at that wavelength. In one embodiment of the optical assembly, the active optical crystal is a cadmium telluride crystal and the window is formed from cesium bromide.
    Type: Application
    Filed: March 14, 2003
    Publication date: September 16, 2004
    Inventors: Vernon Seguin, Leon Newman, R. Russel Austin, Anthony DeMaria