Patents by Inventor Vesa Pylkkanen

Vesa Pylkkanen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9399840
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with sulfur dioxide or a sulfite compound and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface. Optionally, sugars derived from amorphous cellulose and hemicellulose may be separately fermented, such as to monomers for various polymers.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: July 26, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Publication number: 20160184438
    Abstract: In some variations, the invention provides a process for producing a microcrystalline cellulose material, comprising: fractionating lignocellulosic biomass feedstock in the presence of an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; chemically and/or mechanically treating the cellulose-rich solids to form microcrystalline cellulose having an average crystallinity of at least 60%; and recovering the microcrystalline cellulose as a pharmaceutical excipient. The pharmaceutical excipient may function as an antiadherent, a binder, a coating, or a disintegrant. In some embodiments, the pharmaceutical excipient further comprises a lignin-derived lubricant, glidant, sorbent, preservative, or other component. The pharmaceutical excipient may be present in a pill, tablet, capsule, powder, slurry, or other pharmaceutically effective and acceptable form.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 30, 2016
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen
  • Publication number: 20160152779
    Abstract: This disclosure provides lignin-based enzymatic hydrolysis enhancer that includes ethanol-soluble, partially sulfonated lignin. Some embodiments provide a lignin-based enzymatic hydrolysis enhancer comprising AVAPĀ® lignin. Certain embodiments provide a lignin-based enzymatic hydrolysis enhancer comprising AVAPĀ® lignin and lignosulfonates. In some variations, a process for producing a lignin-based enzymatic hydrolysis enhancer comprises fractionating biomass with an acid, a solvent for lignin, and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; recovering the lignin; and generating a lignin-based enzymatic hydrolysis enhancer comprising the lignin. Surprisingly, the lignin-based enzymatic hydrolysis enhancer is experimentally able to enhance glucose yields by 10% or more.
    Type: Application
    Filed: November 24, 2015
    Publication date: June 2, 2016
    Inventors: Vesa PYLKKANEN, Theodora RETSINA
  • Patent number: 9347176
    Abstract: The GreenBox+ technology is suitable to extract hemicellulose sugars prior to pulping of biomass into pulp products. The revenue obtainable from the sugar stream can significantly improve the economics of a pulp and paper mill. An initial extraction and recovery of sugars is followed by production of a pulp product with similar or better properties. Other co-products such as acetates and furfural are also possible. Some variations provide a process for co-producing pulp and hemicellulosic sugars from biomass, comprising: digesting the biomass in the presence of steam and/or hot water to extract hemicellulose into a liquid phase; washing the extracted solids, thereby generating a liquid wash filtrate and washed solids; separating the liquid wash filtrate from the washed solids; refining the washed solids at a refining pH of about 4 or higher, thereby generating pulp; and hydrolyzing the hemicellulose to generate hemicellulosic fermentable sugars.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 24, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Vesa Pylkkanen, Steven R. Rutherford
  • Publication number: 20160122836
    Abstract: A method for the production of fermentable sugars and high viscosity cellulose from lignocellulosic material in a batch or continuous process is provided. Lignocellulosic material is fractionated in a fashion that cellulose is removed as pulp, cooking chemicals can be reused, lignin is separated for the production of process energy, and hemicelluloses are converted into fermentable sugars, while fermentation inhibitors are removed. High yield production of alcohols or organic acids can be obtained from this method using the final reaction step.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventors: Theodora RETSINA, Vesa PYLKKANEN
  • Patent number: 9322072
    Abstract: The present invention generally provides methods of improving lignin separation during biomass fractionation with an acid to release sugars and a solvent for lignin (such as ethanol). In some embodiments, a digestor is employed to fractionating a feedstock in the presence of a solvent for lignin, sulfur dioxide, and water, to produce a liquor containing hemicellulose, cellulose-rich solids, and lignin. A solid additive is added to the digestor, wherein the solid additive combines with at least a portion of the lignin. Then a mixture of lignin and the solid additive is separated from the liquor, prior to hemicellulose recovery. Optionally, a solid additive may also be introduced to a hydrolysis reactor for converting hemicellulose oligomers to monomers, to improve separation of acid-catalyzed lignin. In some embodiments, the solid additive is gypsum or a gypsum/lignin mixture.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 26, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Vesa Pylkkanen, Kimberly Nelson, Mark Szczepanik
  • Patent number: 9322134
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with low mechanical energy input. In some variations, the process includes fractionating biomass with lignosulfonic acids, to generate cellulose-rich solids; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The strong lignosulfonic acids created during delignification give a pH less than 1 and hydrolyze preferentially the amorphous regions of cellulose. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of lignin onto the cellulose surface.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: April 26, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Patent number: 9322133
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: April 26, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Patent number: 9315750
    Abstract: In this disclosure, a process for producing biomass pellets and sugars from cellulosic biomass is provided, comprising: extracting the feedstock with steam and/or hot water and optionally with an acid catalyst, to produce cellulose-rich solids and an extract liquor containing hemicellulosic oligomers and lignin; separating the cellulose-rich solids from the extract liquor; filtering the extract liquor to remove at least some of the lignin, thereby generating a filter permeate comprising cleaned extract liquor containing the hemicellulosic oligomers and a filter retentate comprising a lignin-rich stream; hydrolyzing the hemicellulosic oligomers in the cleaned extract liquor with an acid or enzymes, to generate hemicellulosic monomers which are recovered; and pelletizing the cellulose-rich solids to form biomass pellets, wherein the pelletizing utilizes at least some of the lignin-rich stream as a binder or binder component.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 19, 2016
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Vesa Pylkkanen
  • Publication number: 20160102285
    Abstract: Some variations provide an apparatus for enzymatically hydrolyzing pretreated lignocellulosic biomass, including at least one clarifying vessel comprising: an inlet well, disposed with walls at or near the top of the clarifying vessel, configured for continuously feeding pretreated lignocellulosic biomass; overflow weirs to allow liquid-phase hydrolysate to be continuously recovered from the clarifying vessel; and a controllable bottom outlet to allow a solid phase to be continuously or periodically recovered from the clarifying vessel. In certain embodiments, the clarifying vessel is an existing recausticizing clarifier in a pulp and paper mill.
    Type: Application
    Filed: October 12, 2015
    Publication date: April 14, 2016
    Inventor: Vesa PYLKKANEN
  • Publication number: 20160083635
    Abstract: In some variations, the invention provides a deicer composition comprising alkali acetate, a solvent (such as water) for the alkali acetate, and a corrosion inhibitor comprising lignin or a lignin derivative. The acetate and the lignin or lignin derivative are preferably each derived from the same biomass feedstock. In some embodiments, the alkali is selected from the group consisting of potassium, sodium, magnesium, calcium, and combinations thereof. In some embodiments, the alkali acetate is present in a concentration from about 30 wt % to about 99 wt %. Deicer products may be a crystallized or dried form of the deicer composition.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Vesa PYLKKANEN, Kimberly NELSON
  • Publication number: 20160060667
    Abstract: The invention provides a continuous process for enzymatic hydrolysis of pretreated biomass, the process comprising: providing a pretreated lignocellulosic biomass feed material containing cellulose; introducing the pretreated lignocellulosic biomass feed material to a mechanical-treatment unit containing one or more decompression regions configured to release pressure; introducing a liquid solution containing cellulase enzymes to one or more decompression regions in the mechanical-treatment unit, wherein the liquid solution enters void spaces between fibers of the pretreated lignocellulosic biomass feed material, to form enzyme-containing cellulose-rich solids; and retaining the enzyme-containing cellulose-rich solids under effective hydrolysis conditions to hydrolyze at least some of the cellulose to glucose. Various apparatus configurations are disclosed for the mechanical-treatment unit.
    Type: Application
    Filed: August 27, 2015
    Publication date: March 3, 2016
    Inventors: Jean-Pierre MONCLIN, Vesa PYLKKANEN, Cosmas BAYUADRI
  • Publication number: 20160002689
    Abstract: A method for the production of alcohol and other bioproducts hemicelluloses extracted from biomass prior to thermal conversion of the biomass to energy. The process can be integrated with the host plant process to minimize the energy loss from extracting hemicelluloses. Also disclosed is a Stepwise enzymatic break down of cellulose fibers from a pulping operation which is performed with the redeployment of equipment and vessels contained within typical existing pulp and paper manufacturing mills. The preferred feedstock is highly delignified pulp from acid or alkaline pulping process or from bleaching stage.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Inventors: Theodora RETSINA, Vesa PYLKKANEN
  • Publication number: 20150361474
    Abstract: Some variations provide a process for producing cellulosic fructose from biomass, comprising: fractionating a biomass feedstock in the presence of an acid catalyst, a solvent for lignin, and water, to produce a liquor containing cellulose-rich solids, lignin, and dissolved hemicellulose; removing the cellulose-rich solids from the liquor; hydrolyzing the dissolved hemicellulose contained in the liquor, to produce a hydrolyzed liquor comprising hemicellulosic monomers; hydrolyzing the cellulose-rich solids to produce glucose, using cellulase enzymes or an acid or base hydrolysis catalyst; enzymatically isomerizing the glucose to fructose, using glucose isomerase enzymes; and recovering the fructose in purified form or in a fructose-glucose solution. The cellulosic fructose produced by the disclosed processes has many uses.
    Type: Application
    Filed: August 20, 2015
    Publication date: December 17, 2015
    Inventors: Kimberly NELSON, Vesa PYLKKANEN, Theodora RETSINA, Ryan O'CONNOR
  • Publication number: 20150352140
    Abstract: A biomass-derived dietary supplement comprising an acetate salt, a hemicellulose-derived sweetener, and cellulose is provided. The formulation may originate from treatment of biomass, by converting acetic acid (from biomass) to an acetate salt and combining it with a hemicellulose-based sweetener such as xylitol and inert, non-digestive cellulose. This is formed into a powder, crystal, pill or capsule to be delivered orally as a dietary supplement. Supplemental minerals and vitamins may be added. A process for producing a biomass-derived dietary supplement is also disclosed.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventor: Vesa PYLKKANEN
  • Publication number: 20150354017
    Abstract: The invention provides a method for purifying a biomass hydrolysate comprising sugars and suspended particles, comprising centrifuging the biomass hydrolysate, thermally treating the centrifuged hydrolysate to chemically or physically agglomerate the suspended particles, and filtering the thermally treated hydrolysate to remove agglomerated suspended particles, thereby generating a purified hydrolysate (sugar syrup). The sequence of steps may be varied. Biomass hydrolysates may be provided from a wide variety of processes. Surprisingly, a 20-fold improvement in sugar purity (total suspended solids content) is demonstrated experimentally, compared to prior methods.
    Type: Application
    Filed: May 20, 2015
    Publication date: December 10, 2015
    Inventors: Ziyu WANG, Zheng DANG, Mehmet Sefik TUNC, Vesa PYLKKANEN, Theodora RETSINA
  • Patent number: 9187865
    Abstract: Processes disclosed are capable of converting biomass into high-crystallinity nanocellulose with surprisingly low mechanical energy input. In some variations, the process includes fractionating biomass with an acid (such as sulfur dioxide), a solvent (such as ethanol), and water, to generate cellulose-rich solids and a liquid containing hemicellulose and lignin; and mechanically treating the cellulose-rich solids to form nanofibrils and/or nanocrystals. The total mechanical energy may be less than 500 kilowatt-hours per ton. The crystallinity of the nanocellulose material may be 80% or higher, translating into good reinforcing properties for composites. The nanocellulose material may include nanofibrillated cellulose, nanocrystalline cellulose, or both. In some embodiments, the nanocellulose material is hydrophobic via deposition of some lignin onto the cellulose surface.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: November 17, 2015
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Kimberly Nelson, Theodora Retsina, Vesa Pylkkanen, Ryan O'Connor
  • Publication number: 20150275237
    Abstract: What is disclosed is a biorefining process to co-produce xylitol with ethanol or other products. In some variations, a process for producing ethanol and xylitol from lignocellulosic biomass, comprises: extracting hemicelluloses from lignocellulosic biomass, wherein the hemicelluloses include xylose oligomers and other sugar oligomers; hydrolyzing the xylose oligomers and the other sugar oligomers, using an acid catalyst or enzymes, to generate xylose and other sugar monomers, respectively; fermenting the other sugar monomers to ethanol using a suitable ethanol-producing microorganism; removing at least some of the ethanol (to increase concentration of xylose); fermenting the xylose to xylitol using a suitable xylitol-producing microorganism; and recovering the xylitol at high concentration.
    Type: Application
    Filed: March 19, 2015
    Publication date: October 1, 2015
    Inventors: Theodora RETSINA, Vesa PYLKKANEN
  • Publication number: 20150275252
    Abstract: In some variations, this invention provides a process for producing fermentable sugars from cellulosic biomass, comprising: extracting biomass with steam or hot water to produce an extract liquor containing hemicellulose oligomers, dissolved lignin, and cellulose-rich solids; separating and washing the cellulose-rich solids; removing a portion of glucan contained in the washed cellulose-rich solids as glucose oligomers using a liquefaction-focused blend of enzymes; co-hydrolyzing glucose oligomers and hemicellulose oligomers, with enzymes or an acid catalyst, to produce glucose and hemicellulose monomers; and recovering the glucose and hemicellulose monomers as fermentable sugars. The liquefaction-focused blend of enzymes contains endoglucanases and exoglucanases. A rotating unit for high-solids enzymatic hydrolysis may be employed, with continuous liquid removal. Optionally, the glucose and the hemicellulose monomers may be recovered as separate streams.
    Type: Application
    Filed: March 27, 2015
    Publication date: October 1, 2015
    Inventors: Theodora RETSINA, Vesa PYLKKANEN, Ryan ZEBROSKI
  • Patent number: 9145529
    Abstract: This invention provides processes to convert biomass into energy-dense biomass for combustion, alone or in combination with another solid fuel. Some embodiments provide processes for producing energy-dense biomass from cellulosic biomass, comprising extracting the feedstock with steam and/or hot water to produce an extract liquor containing hemicellulosic oligomers, dissolved lignin, and cellulose-rich solids; separating the extract liquor, to produce dewatered cellulose-rich solids; hydrolyzing the dewatered cellulose-rich solids, thereby removing a portion of the cellulose, to produce intermediate solids (with higher energy density) and a hydrolysate; drying the intermediate solids to produce energy-dense biomass; and optionally recovering fermentable sugars from the hydrolysate. The energy-dense biomass may be pelletized into biomass pellets, which may have a similar energy density as torrefied pellets from wood.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: September 29, 2015
    Assignee: API Intellectual Property Holdings, LLC
    Inventors: Theodora Retsina, Vesa Pylkkanen