Patents by Inventor Vijit Sabnis

Vijit Sabnis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7605531
    Abstract: A full color display comprising a red, a green, and a blue light emitting diode, each light emitting diode including a light emitting region having at least one layer of single crystal rare earth material, the rare earth material in each of the light emitting diodes having at least one radiative transition, and the rare earth material producing a radiation wavelength of approximately 640 nm in the red light emitting diode, 540 nm in the green light emitting diode, and 460 nm in the blue light emitting diode. Generally, the color of each LED is determined by selecting a rare earth with a radiative transition producing a radiation wavelength at the selected color. In cases where the rare earth has more than one radiative transition, tuned mirrors can be used to select the desired color.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: October 20, 2009
    Assignee: Translucent, Inc.
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7388230
    Abstract: A selective colored LED includes a light emitting area epitaxially grown on a first cladding layer, and a second cladding layer epitaxially grown on the light emitting area. The light emitting area includes at least one thin single crystal layer of rare earth material having at least one radiative transition producing a radiation wavelength of a selected color. The first cladding layer is positioned on a first mirror stack, with pairs of mirrors having an effective thickness of at least one half wavelength of the selected color, and a second mirror stack is positioned on the second cladding layer. Generally, the color of the LED is determined by selecting a rare earth with a radiative transition producing a radiation wavelength at the selected color. In cases where the rare earth has more than one radiative transition, tuned mirrors can be used to select the desired color.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: June 17, 2008
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Publication number: 20080135924
    Abstract: A fully depleted MOSFET has a semiconductor-on-insulator substrate that includes a substrate material, a BOX positioned on the substrate material, and an active layer positioned on the BOX. The BOX includes a first layer of material with a first dielectric constant and a first thickness and a second layer of material having a second dielectric constant different than the first dielectric constant and a second thickness different than the first thickness. The first layer of material is positioned adjacent the substrate material and the second layer of material is positioned adjacent the active layer. Drain and source regions are formed in the active layer so as to be fully depleted. The drain and source regions are separated by a channel region in the active layer. A gate insulating layer overlies the channel region and a gate stack is positioned on the gate insulating region. It is anticipated that the structure is most useful for channel regions less than 90 nm long.
    Type: Application
    Filed: December 8, 2006
    Publication date: June 12, 2008
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 7355269
    Abstract: An integrated circuit and method of fabrication including a non-semiconductor material substrate with a layer of single crystal rare earth deposited on the surface thereof. A layer of single crystal semiconductor material is grown on the layer of single crystal rare earth and an integrated circuit is formed in the layer of single crystal semiconductor material. In a preferred embodiment the single crystal semiconductor material is silicon and the integrated circuit is formed by standard semiconductor industry processes.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: April 8, 2008
    Inventors: Michael Lebby, Vijit Sabnis, Petar B. Atanackovic
  • Patent number: 6846740
    Abstract: Methods in accordance with the present invention provide a quasi-planarized surface between one or more semiconductor devices and at least a portion of surrounding passivation material, where the devices have different elevations above a substrate. A hard mask defines the planarized surface as the interface between the hard mask and both the passivation layer and the device, after a passivation layer etching process. The resulting planarized surface has a small to zero step height, is insensitive to passivation layer non-uniformity and etch non-uniformity, provides full passivation of the device side wall, provides protection for the device against etch-induced damage, and prevents the detrimental effects of passivation layer voids.
    Type: Grant
    Filed: June 14, 2003
    Date of Patent: January 25, 2005
    Assignee: Intel Corporation
    Inventors: Hilmi Volkan Demir, Onur Fidaner, David Andrew Barclay Miller, Vijit Sabnis, Jun-Fei Zheng
  • Publication number: 20040253808
    Abstract: Methods in accordance with the present invention provide a quasi-planarized surface between one or more semiconductor devices and at least a portion of surrounding passivation material, where the devices have different elevations above a substrate. A hard mask defines the planarized surface as the interface between the hard mask and both the passivation layer and the device, after a passivation layer etching process. The resulting planarized surface has a small to zero step height, is insensitive to passivation layer non-uniformity and etch non-uniformity, provides full passivation of the device side wall, provides protection for the device against etch-induced damage, and prevents the detrimental effects of passivation layer voids.
    Type: Application
    Filed: June 14, 2003
    Publication date: December 16, 2004
    Inventors: Hilmi Volkan Demir, Onur Fidaner, David Andrew Barclay Miller, Vijit Sabnis, Jun-Fei Zheng
  • Patent number: 6680791
    Abstract: This invention relates to a semiconductor device and method for switching or modulating optical signals. The semiconductor device has a photodetector having a low electrical capacitance Cd, a detector absorbing layer for absorbing an optical signal beam, a modulator having a low capacitance Cm and a modulator absorbing layer exhibiting an electric field-dependent absorption coefficient. The modulator absorbing layer is used for absorbing an optical power beam, which is to be modulated or switched. The device has a low resistivity region between the photodetector and the modulator such that the electric field-dependent absorption coefficient is altered uniformly and rapidly throughout the modulator absorbing layer during absorption of the optical signal beam in the detector absorbing layer. The device is equipped with a high resistivity element in series with the low resistivity region for minimizing a net charge flow to and from the device.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: January 20, 2004
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hilmi Volkan Demir, David A. B. Miller, Vijit Sabnis
  • Patent number: 6628695
    Abstract: A monolithically integrated, mode-locked vertical cavity surface emitting laser (VCSEL) for emitting ultrafast high power pulses. The resonator of the VCSEL has an active medium for emitting a radiation, a spacer for extending the resonator to a length L at which a significant number N of axial modes of the radiation are supported in the resonator and a saturable absorber for mode-locking. The VCSEL has an arrangement for stabilizing the resonator such that one transverse mode of the radiation is supported within the resonator. The VCSEL also has an arrangement for compensating dispersion of the radiation occurring in the resonator.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: September 30, 2003
    Assignee: The board of trustees of the Leland Stanford Junior University
    Inventors: Rafael I. Aldaz, Gordon A. Keeler, Vijit A. Sabnis, James S. Harris, Jr., David A.B. Miller
  • Publication number: 20030169797
    Abstract: A monolithically integrated, mode-locked vertical cavity surface emitting laser (VCSEL) for emitting ultrafast high power pulses. The resonator of the VCSEL has an active medium for emitting a radiation, a spacer for extending the resonator to a length L at which a significant number N of axial modes of the radiation are supported in the resonator and a saturable absorber for mode-locking. The VCSEL has an arrangement for stabilizing the resonator such that one transverse mode of the radiation is supported within the resonator. The VCSEL also has an arrangement for compensating dispersion of the radiation occurring in the resonator.
    Type: Application
    Filed: June 19, 2002
    Publication date: September 11, 2003
    Inventors: Rafael I. Aldaz, Gordon A. Keeler, Vijit A. Sabnis, James S. Harris, David A.B. Miller
  • Publication number: 20030063362
    Abstract: This invention relates to a semiconductor device for switching or modulating optical signals, cross-connects and switches built of such devices as well as a method of switching or modulating optical signals. The semiconductor device has a photodetector having a low electrical capacitance Cd, a detector absorbing layer for absorbing an optical signal beam, a modulator having a low capacitance Cm and a modulator absorbing layer exhibiting an electric field-dependent absorption coefficient. The modulator absorbing layer is used for absorbing an optical power beam, which is to be modulated or switched. The device has a low resistivity region between the photodetector and the modulator such that the electric field-dependent absorption coefficient is altered uniformly and rapidly throughout the modulator absorbing layer during absorption of the optical signal beam in the detector absorbing layer.
    Type: Application
    Filed: February 13, 2002
    Publication date: April 3, 2003
    Inventors: Hilmi Volkan Demir, David A.B. Miller, Vijit Sabnis