Patents by Inventor Vikram R. Jamalabad

Vikram R. Jamalabad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6823230
    Abstract: Methods for improving the manufacture of objects made by layered manufacturing techniques through improved tool path generation. A vertex improvement aspect improves tool paths used to form vertices. Outer perimeter vertices can be improved by automatically creating an outer boundary reflecting the design intent to have material extending to the perimeter vertex. The outer boundary can be used as a contour tool path or as a limit to travel by raster tool paths. Boundary vertices within parts can be improved by extending more internal boundary vertices outward toward enclosing vertices, thereby eliminating some internal voids. Contour boundaries near outer perimeter corners can be better defined by extending outward a contour tool path toward the corners. Narrow regions between combinations of outer and/or inner perimeters can be filled through improved tool paths. Layer regions near inner voids can receive consistent filling through an improved raster tool path method.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: November 23, 2004
    Assignee: Honeywell International Inc.
    Inventors: Vikram R. Jamalabad, Jeffrey A. Chard, Charles J. Gasdaska
  • Publication number: 20040089983
    Abstract: Methods for improving layered manufacturing techniques to improve an objects' surface properties and shorten manufacturing time for support structures. One aspect of the invention forms surfaces having reduced or no concavities between layers having improved crack resistance. One method deposits alternate, surface improvement material on each layer near the future location of the main material surface, followed by deposition of the main material, the edges of which conform to the previously deposited and solidified alternate material. In this method, the center of the main material layers can be concave rather than the interlayer regions. Another aspect of the invention provides removable structures to support the deposition of main material. The support structures provide support over main material cavities for depositing the material to form the cavity ceilings, while minimizing the time and material required to build the support structures.
    Type: Application
    Filed: October 24, 2003
    Publication date: May 13, 2004
    Inventors: Vikram R. Jamalabad, Charles J. Gasdaska, Milton Ortiz
  • Patent number: 6682684
    Abstract: Methods for improving layered manufacturing techniques to improve an objects' surface properties and shorten manufacturing time for support structures. One aspect of the invention forms surfaces having reduced or no concavities between layers having improved crack resistance. One method deposits alternate, surface improvement material on each layer near the future location of the main material surface, followed by deposition of the main material, the edges of which conform to the previously deposited and solidified alternate material. In this method, the center of the main material layers can be concave rather than the interlayer regions. Another aspect of the invention provides removable structures to support the deposition of main material. The support structures provide support over main material cavities for depositing the material to form the cavity ceilings, while minimizing the time and material required to build the support structures.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: January 27, 2004
    Assignee: Honeywell International Inc.
    Inventors: Vikram R. Jamalabad, Charles J. Gasdaska, Milton Ortiz
  • Patent number: 5900207
    Abstract: A fused deposition process is used to form three-dimensional solid objects from a mixture including a particulate composition dispersed in a binder. The article is formed by depositing the mixture in repeated layers of predefined thickness, with each layer solidifying before the next adjacent layer is dispensed. Following formation and a binder removal step, the article may be at least partially densified to achieve preselected properties. The process permits three-dimensional articles to be formed relatively quickly and inexpensively, without the need for molds or other tooling.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: May 4, 1999
    Assignees: Rutgers, the State University Old Queens, Stratasys, Inc.
    Inventors: Stephen C. Danforth, Mukesh Agarwala, Amit Bandyopadghyay, Noshir Langrana, Vikram R. Jamalabad, Ahmad Safari, Remco van Weeren, William R. Priedeman, Jr.
  • Patent number: 5824250
    Abstract: A ceramic component is manufactured rapidly using a mold made directly from a solid freeform manufacturing process. Solid freeform fabrication, or rapid prototyping, procedures are used to generate molds of materials that are soluble or otherwise fugitive. A gel casting suspension containing ceramic and emulsifying agents is poured into the cavity of the mold and caused to set. The mold is then removed by dissolution or heat treatment, leaving intact the gelcast part. Conventional procedures are then utilized to densify the gelcast component to the required final component. Time consuming and expensive machine tooling procedures are virtually eliminated. Ceramic components are generated rapidly in a cost effective manner.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: October 20, 1998
    Assignee: AlliedSignal Inc.
    Inventors: Philip J. Whalen, Vikram R. Jamalabad, John P. Pollinger, Mukesh Agarwala, Stephen C. Danforth
  • Patent number: 5738817
    Abstract: A fused deposition process is used to form three-dimensional solid objects from a mixture including a particulate composition dispersed in a binder. The article is formed by depositing the mixture in repeated layers of predefined thickness, with each layer solidifying before the next adjacent layer is dispensed. Following formation and a binder removal step, the article may be at least partially densified to achieve preselected properties. The process permits three-dimensional articles to be formed relatively quickly and inexpensively, without the need for molds or other tooling.
    Type: Grant
    Filed: February 8, 1996
    Date of Patent: April 14, 1998
    Assignee: Rutgers, The State University
    Inventors: Stephen C. Danforth, Mukesh Agarwala, Amit Bandyopadghyay, Noshir Langrana, Vikram R. Jamalabad, Ahmad Safari, Remco van Weeren