Patents by Inventor Vincent C. Prantil

Vincent C. Prantil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6732914
    Abstract: A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically “thick” foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: May 11, 2004
    Assignee: Sandia National Laboratories
    Inventors: Charles H. Cadden, Steven H. Goods, Vincent C. Prantil
  • Publication number: 20030234280
    Abstract: A system for joining a pair of structural members having widely differing coefficients of thermal expansion is disclosed. A mechanically “thick” foil is made by dispersing a refractory metal powder, such as molybdenum, niobium, tantalum, or tungsten into a quantity of a liquid, high expansion metal such as copper, silver, or gold, casting an ingot of the mixture, and then cutting sections of the ingot about 1 mm thick to provide the foil member. These foil members are shaped, and assembled between surfaces of structural members for joining, together with a layer of a braze alloy on either side of the foil member capable of wetting both the surfaces of the structural members and the foil. The assembled body is then heated to melt the braze alloy and join the assembled structure. The foil member subsequently absorbs the mechanical strain generated by the differential contraction of the cooling members that results from the difference in the coefficients of thermal expansion of the members.
    Type: Application
    Filed: March 28, 2002
    Publication date: December 25, 2003
    Inventors: Charles H. Cadden, Steven H. Goods, Vincent C. Prantil