Patents by Inventor Vincent D. MCGAHEE

Vincent D. MCGAHEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939542
    Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.
    Type: Grant
    Filed: September 11, 2023
    Date of Patent: March 26, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
  • Patent number: 11932817
    Abstract: The present disclosure generally relates to systems, methods, and processes for catalytic hydrocarbon reformation.
    Type: Grant
    Filed: February 13, 2023
    Date of Patent: March 19, 2024
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Ryan W. Snell, Vincent D. McGahee
  • Publication number: 20230407189
    Abstract: This disclosure provides processes for reforming hydrocarbons by using a series of adiabatic reactors and catalysts, in which the catalyst(s) in at least one front or upstream catalyst bed or reactor includes a higher fluoride concentration, higher chloride concentration, or both than the respective halide concentrations in the catalysts in one or more downstream catalyst beds or reactors, which has been unexpectedly discovered to extend the useful life and/or the selectivity of the catalyst system.
    Type: Application
    Filed: May 23, 2023
    Publication date: December 21, 2023
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Cori A. Demmelmaier-Chang, Joseph Bergmeister, III, Vincent D. McGahee, Gabriela D. Alvez-Manoli
  • Patent number: 11802250
    Abstract: A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: October 31, 2023
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Bruce D. Murray, Scott G. Morrison, Kenneth Fountain, Steven R. Horlacher, Vincent D. Mcgahee, Reza Khankal, David Dockter
  • Patent number: 11713424
    Abstract: A process for operating a reforming system by operating a reforming section containing a plurality of reactors, wherein each of the plurality of reactors containing a reforming catalyst capable of catalyzing the conversion of at least a portion of the hydrocarbons in a treated hydrocarbon stream into a reactor effluent comprising aromatic hydrocarbons, and operating a sulfur guard bed (SGB) to remove sulfur and sulfur-containing hydrocarbons from a hydrocarbon feed to provide the treated hydrocarbon stream, where the SGB contains at least a layer of a SGB catalyst comprising the same catalyst as the reforming catalyst, and where each reactor of the plurality of reactors within the reforming section may be operated at a higher operating temperature than an operating temperature of the SGB. A system for carrying out the process is also provided.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: August 1, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Ryan W. Snell, Scott G. Morrison, Vincent D. McGahee, Xianghong Hao, Gabriela Alvez-Manoli
  • Patent number: 11643376
    Abstract: Removal of solids accumulations that are attached to an inlet tube sheet of a heat exchanger in a hydrogenation reactor system by injecting a flush liquid through an injection port on the heat exchanger. Injecting the flush liquid removes portions of the solids accumulations.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: May 9, 2023
    Inventors: Israel Garcia, Vincent D. McGahee
  • Patent number: 11634648
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: September 20, 2022
    Date of Patent: April 25, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11633707
    Abstract: A bi-modal radial flow reactor comprising a cylindrical outer housing surrounding at least five cylindrical, concentric zones, including at least three annulus vapor zones and at least two catalyst zones. The at least two catalyst zones comprise an outer catalyst zone and an inner catalyst zone. The at least three annulus vapor zones comprise an outer annulus vapor zone, a middle annulus vapor zone, and a central annulus vapor zone, wherein the central annulus vapor zone extends along a centerline of the bi-modal radial flow reactor. The outer catalyst zone is intercalated with the outer annulus vapor zone and the middle annulus vapor zone, and the inner catalyst zone is intercalated with the middle annulus vapor zone and the central annulus vapor zone. A removable head cover can be fixably coupled to a top of the cylindrical outer housing to seal a top of the bi-modal radial flow reactor.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: April 25, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Cameron M. Crager, William D. Treleaven
  • Publication number: 20230046694
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Application
    Filed: September 20, 2022
    Publication date: February 16, 2023
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11498041
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: November 15, 2022
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11492558
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: November 8, 2022
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Publication number: 20220126248
    Abstract: A bi-modal radial flow reactor comprising a cylindrical outer housing surrounding at least five cylindrical, concentric zones, including at least three annulus vapor zones and at least two catalyst zones. The at least two catalyst zones comprise an outer catalyst zone and an inner catalyst zone. The at least three annulus vapor zones comprise an outer annulus vapor zone, a middle annulus vapor zone, and a central annulus vapor zone, wherein the central annulus vapor zone extends along a centerline of the bi-modal radial flow reactor. The outer catalyst zone is intercalated with the outer annulus vapor zone and the middle annulus vapor zone, and the inner catalyst zone is intercalated with the middle annulus vapor zone and the central annulus vapor zone. A removable head cover can be fixably coupled to a top of the cylindrical outer housing to seal a top of the bi-modal radial flow reactor.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 28, 2022
    Inventors: Vincent D. McGahee, Cameron M. Crager, William D. Treleaven
  • Publication number: 20210371759
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Application
    Filed: August 10, 2021
    Publication date: December 2, 2021
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Publication number: 20210362115
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Application
    Filed: August 10, 2021
    Publication date: November 25, 2021
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11149211
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 19, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 11103843
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: August 31, 2021
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Publication number: 20200255749
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Application
    Filed: April 28, 2020
    Publication date: August 13, 2020
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Publication number: 20200147573
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Application
    Filed: January 17, 2020
    Publication date: May 14, 2020
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 10633603
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: April 28, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg
  • Patent number: 10537867
    Abstract: A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: January 21, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Vincent D. McGahee, Daniel M. Hasenberg