Patents by Inventor Vinod M. Menon

Vinod M. Menon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240057374
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 15, 2024
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Publication number: 20230413596
    Abstract: Embodiments of the disclosed subject matter provide a device including one or more organic layers that include an emissive layer, a first electrode layer disposed over the one or more organic layers, a plurality of nanostructures formed as part of the first electrode layer, a substrate, a second electrode layer, where the second electrode layer is disposed on the substrate, the one or more organic layers are disposed on the second electrode layer, and the first electrode layer including the plurality of nanostructures is disposed on the one or more organic layers and within the predetermined threshold distance of the emissive layer.
    Type: Application
    Filed: August 31, 2023
    Publication date: December 21, 2023
    Inventors: Vinod M. MENON, Michael FUSELLA, Nicholas J. THOMPSON
  • Publication number: 20230413590
    Abstract: Embodiments of the disclosed subject matter provide a device that may include an organic light emitting device (OLED) having a substrate, a first electrode disposed over the substrate, a second electrode disposed over the first electrode, and an organic emissive layer having a first surface positioned over a second surface is disposed between the first electrode and the second electrode. A nanoparticle layer may be disposed over the organic emissive layer and has a first surface that is positioned over a second surface. The nanoparticle layer may include a first plurality of nanoparticles comprising a dielectric material, and a surrounding medium. A distance from the second surface of the nanoparticle layer to the first surface of the organic emissive layer may be not more than 50 nm, and there may be a difference of at least 1.0 between a refractive index of the dielectric material and the surrounding medium.
    Type: Application
    Filed: May 31, 2023
    Publication date: December 21, 2023
    Inventors: Haridas MUNDOOR, Nicholas J. THOMPSON, Vinod M. MENON
  • Patent number: 11832474
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: November 28, 2023
    Assignee: Universal Display Corporation
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Patent number: 11793015
    Abstract: Embodiments of the disclosed subject matter provide a device including one or more organic layers that include an emissive layer, a first electrode layer disposed over the one or more organic layers, a plurality of nanostructures formed as part of the first electrode layer, a substrate, a second electrode layer, where the second electrode layer is disposed on the substrate, the one or more organic layers are disposed on the second electrode layer, and the first electrode layer including the plurality of nanostructures is disposed on the one or more organic layers and within the predetermined threshold distance of the emissive layer.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: October 17, 2023
    Assignee: Universal Display Corporation
    Inventors: Vinod M. Menon, Michael Fusella, Nicholas J. Thompson
  • Publication number: 20230157058
    Abstract: High-efficiency plasmonic OLED displays are provided that use the design of the plasmonic device to overcome some of the shortcomings of conventional display panels. Control of the Stokes parameters of the emitted light and/or modification of the ambient light incident on the device relative to the emitted light is used to maximize the amount of visible light emitted by the display.
    Type: Application
    Filed: November 2, 2022
    Publication date: May 18, 2023
    Inventors: Haridas MUNDOOR, Nicholas J. THOMPSON, Vinod M MENON
  • Publication number: 20230141141
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Patent number: 11569481
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: January 31, 2023
    Assignee: Universal Display Corporation
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Publication number: 20220149315
    Abstract: Embodiments of the disclosed subject matter provide a device including one or more organic layers that include an emissive layer, a first electrode layer disposed over the one or more organic layers, a plurality of nanostructures formed as part of the first electrode layer, a substrate, a second electrode layer, where the second electrode layer is disposed on the substrate, the one or more organic layers are disposed on the second electrode layer, and the first electrode layer including the plurality of nanostructures is disposed on the one or more organic layers and within the predetermined threshold distance of the emissive layer.
    Type: Application
    Filed: December 29, 2021
    Publication date: May 12, 2022
    Inventors: Vinod M. MENON, Michael FUSELLA, Nicholas J. THOMPSON
  • Patent number: 11245086
    Abstract: Embodiments of the disclosed subject matter provide a device including one or more organic layers that include an emissive layer, a first electrode layer disposed over the one or more organic layers, a plurality of nanostructures formed as part of the first electrode layer, a substrate, a second electrode layer, where the second electrode layer is disposed on the substrate, the one or more organic layers are disposed on the second electrode layer, and the first electrode layer including the plurality of nanostructures is disposed on the one or more organic layers and within the predetermined threshold distance of the emissive layer.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: February 8, 2022
    Assignee: Universal Display Corporation
    Inventors: Vinod M Menon, Michael Fusella, Nicholas J. Thompson
  • Publication number: 20210313545
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Application
    Filed: June 22, 2021
    Publication date: October 7, 2021
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Patent number: 11075363
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: July 27, 2021
    Assignee: UNIVERSAL DISPLAY CORPORATION
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Publication number: 20200295307
    Abstract: Device structures are provided that include an OLED arranged in a stack with one or more additional layers that form a Tamm plasmon stack. The structure allows for coupling emitter excited state energy into the emissive Tamm plasmon mode.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 17, 2020
    Inventors: Michael FUSELLA, Nicholas J. THOMPSON, Vinod M. MENON
  • Publication number: 20200295293
    Abstract: Embodiments of the disclosed subject matter provide a device including one or more organic layers that include an emissive layer, a first electrode layer disposed over the one or more organic layers, a plurality of nanostructures formed as part of the first electrode layer, a substrate, a second electrode layer, where the second electrode layer is disposed on the substrate, the one or more organic layers are disposed on the second electrode layer, and the first electrode layer including the plurality of nanostructures is disposed on the one or more organic layers and within the predetermined threshold distance of the emissive layer.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 17, 2020
    Inventors: Vinod M. MENON, Michael FUSELLA, Nicholas J. THOMPSON
  • Patent number: 10585043
    Abstract: Technologies are described for methods to fabricate lasers to amplify light. The methods may comprise depositing nanoparticles on a substrate. The length, width, and height of the nanoparticles may be less than 100 nm. The methods may further comprise distributing the nanoparticles on the substrate to produce a film. The nanoparticles in the film may be coupled nanoparticles. The coupled nanoparticles may be in disordered contact with each other within the film. The distribution may be performed such that constructive interference of the light occurs by multiple scattering at the boundaries of the coupled nanoparticles within the film. The methods may comprise exposing the film to a power source.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: March 10, 2020
    Assignees: Brookhaven Science Associates, LCC, Research Foundation of The City University of New York
    Inventors: Matthew Y. Sfeir, Kannatassen Appavoo, Xiaoze Liu, Vinod M. Menon
  • Publication number: 20190348636
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Application
    Filed: July 26, 2019
    Publication date: November 14, 2019
    Applicant: Universal Display Corporation
    Inventors: Nicholas J. THOMPSON, Marc A. BALDO, Michael S. WEAVER, Vinod M. MENON
  • Patent number: 10403854
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: September 3, 2019
    Assignee: UNIVERSAL DISPLAY CORPORATION
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Publication number: 20180219182
    Abstract: An OLED is disclosed that includes an enhancement layer having optically active metamaterials, or hyperbolic metamaterials, which transfer radiative energy from the organic emissive material to a non-radiative mode, wherein the enhancement layer is disposed over the organic emissive layer opposite from the first electrode, and is positioned no more than a threshold distance away from the organic emissive layer, wherein the organic emissive material has a total non-radiative decay rate constant and a total radiative decay rate constant due to the presence of the enhancement layer, and the threshold distance is where the total non-radiative decay rate constant is equal to the total radiative decay rate constant; and an outcoupling layer disposed over the enhancement layer, wherein the outcoupling layer scatters radiative energy from the enhancement layer to free space.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 2, 2018
    Applicant: Universal Display Corporation
    Inventors: Nicholas J. THOMPSON, Marc A. BALDO, Michael S. WEAVER, Vinod M. MENON
  • Patent number: 9960386
    Abstract: A method for improving the operation of an OLED includes maximizing on-radiative transfer of excited state energy from the OLED's organic emissive material to surface plasmon polaritons in an enhancement layer by providing the enhancement layer no more than a threshold distance away from the organic emissive layer; and emitting light into free space from the enhancement layer by scattering the energy from the surface plasmon polaritons through an outcoupling layer that is provided proximate to the enhancement layer but opposite from the organic emissive layer.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: May 1, 2018
    Assignee: Universal Display Corporation
    Inventors: Nicholas J. Thompson, Marc A. Baldo, Michael S. Weaver, Vinod M. Menon
  • Publication number: 20170324215
    Abstract: Technologies are described for methods to fabricate lasers to amplify light. The methods may comprise depositing nanoparticles on a substrate. The length, width, and height of the nanoparticles may be less than 100 nm. The methods may further comprise distributing the nanoparticles on the substrate to produce a film. The nanoparticles in the film may be coupled nanoparticles. The coupled nanoparticles may be in disordered contact with each other within the film. The distribution may be performed such that constructive interference of the light occurs by multiple scattering at the boundaries of the coupled nanoparticles within the film. The methods may comprise exposing the film to a power source.
    Type: Application
    Filed: May 4, 2017
    Publication date: November 9, 2017
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Matthew Y. Sfeir, Kannatassen Appavoo, Xiaoze Liu, Vinod M. Menon